Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jan 1;177(1):159–168. doi: 10.1042/bj1770159

The isolation and properties of pig submandibular kallikrein

Marius Lemon 1,*, Franz Fiedler 1, Bruni Förg-Brey 1, Christa Hirschauer 1, Gisela Leysath 1, Hans Fritz 1
PMCID: PMC1186352  PMID: 426764

Abstract

The kallikrein from pig submandibular glands was highly purified, with an overall yield of 31%. Affinity chromatography on bovine basic pancreatic trypsin inhibitor linked to Sepharose 4B was an especially effective step in the purification procedure, giving a purification factor of 80. The enzyme is a single-chain molecule, occurring, as does pig urinary kallikrein, as a major B-form of apparent mol.wt. 39600 and minor amounts of an A-form of apparent mol.wt. 35900; the two forms can be separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The amino acid composition of pig submandibular kallikrein is very similar to, but not quite identical with, that of the two-chain β-kallikrein isolated from pig pancreatic autolysates. Submandibular kallikrein contains notably more glucosamine and hexoses than does pancreatic β-kallikrein. Submandibular kallikrein, and also urinary kallikrein, exhibit an unusual biphasic hydrolysis of substrate esters that is not shared by pancreatic β-kallikrein. For the submandibular enzyme, the Km for the initial reaction phase of the hydrolysis of α-N-benzoyl-l-arginine ethyl ester is 0.15±0.01mm (mean±s.e.m.), but rises to 0.69±0.04mm (mean±s.e.m.) in the stationary reaction phase; the Vmax. does not differ significantly between the two phases. The esterolytic activities of submandibular and urinary kallikreins on a number of esters of different amino acids resemble each other much more closely than those of pancreatic β-kallikrein.

Full text

PDF
159

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell O. E., Jr, Cain C. E., Sulya L. L., White H. B., Jr The occurrence of polyunsaturated aldehydes in choline-containing phosphoglycerides of a human brain meningioma. Biochim Biophys Acta. 1967 Oct 2;144(2):481–484. doi: 10.1016/0005-2760(67)90183-x. [DOI] [PubMed] [Google Scholar]
  2. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  3. FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fiedler F., Hirschauer C., Werle E. Anreicherung von Präkallikrein B aus Schweinepankreas und Eigenschaften verschiedener Formen des Pankreaskallikreins. Hoppe Seylers Z Physiol Chem. 1970 Feb;351(2):225–238. [PubMed] [Google Scholar]
  5. Fiedler F., Hirschauer C., Werle E. Characterization of pig pancreatic kallikreins A and B. Hoppe Seylers Z Physiol Chem. 1975 Dec;356(12):1879–1891. doi: 10.1515/bchm2.1975.356.2.1879. [DOI] [PubMed] [Google Scholar]
  6. Fiedler F., Leysath G., Werle E. Hdrolysis of amino-acid esters by pig-pancreatic kallikrein. Eur J Biochem. 1973 Jul 2;36(1):152–159. doi: 10.1111/j.1432-1033.1973.tb02895.x. [DOI] [PubMed] [Google Scholar]
  7. Fiedler F., Müller B., Werle E. Charakterisierung verschiedener Schweinekallikreine mittels Diisopropylfluorophosphat. Hoppe Seylers Z Physiol Chem. 1970 Aug;351(8):1002–1006. [PubMed] [Google Scholar]
  8. Fiedler F. Pig pancreatic kallikreins A and B. Methods Enzymol. 1976;45:289–303. doi: 10.1016/s0076-6879(76)45027-9. [DOI] [PubMed] [Google Scholar]
  9. Fiedler F., Werle E. Activation, inhibition, and pH-dependence of the hydrolysis of alpha-N-benzoyl-L-arginine ethyl ester catalyzed by kallikrein from porcine pancreas. Eur J Biochem. 1968 Dec;7(1):27–33. doi: 10.1111/j.1432-1033.1968.tb19569.x. [DOI] [PubMed] [Google Scholar]
  10. Fritz H., Brey B., Schmal A., Werle E. Verwendung wasserunlöslicher Derivate des Trypsin-Kallikrein-Inhibitors zur Isolierung von Kallikreinen und von Plasmin. Hoppe Seylers Z Physiol Chem. 1969 May;350(5):617–625. [PubMed] [Google Scholar]
  11. Fritz H., Eckert I., Werle E. Isolierung und Charakterisierung von sialinsäurehaltigem und sialinsäurefreiem Kallikrein aus Schweinepankreas. Hoppe Seylers Z Physiol Chem. 1967 Sep;348(9):1120–1132. [PubMed] [Google Scholar]
  12. Fritz H., Förg-Brey B. Zur Isolierung von Organ- und Harnkallikreinen durch Affinitätschromatographie. Spezifische Bingung an wasserunlösliche Inhibitorderivate und Dissoziation der Komplexe mit kompetitiven Hemmstoffen (Benzamidin. Hoppe Seylers Z Physiol Chem. 1972 Jun;353(6):901–905. [PubMed] [Google Scholar]
  13. Fritz H., Hartwich G., Werle E. Uber Proteaseinhibitoren. I. Isolierung und Charakterisierung des Trypsininhibitors aus Pankreasgewebe und Pankreassekret vom Hund. Hoppe Seylers Z Physiol Chem. 1966;345(2):150–167. [PubMed] [Google Scholar]
  14. HABERMANN E. [Separation and purification of pancreatic kallikrein]. Hoppe Seylers Z Physiol Chem. 1962 Jun 20;328:15–23. doi: 10.1515/bchm2.1962.328.1.15. [DOI] [PubMed] [Google Scholar]
  15. Kutzbach C., Schmidt-Kastner G. Kallikrein from pig pancreas. Purification, separation of components A and B, and crystallization. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1099–1106. doi: 10.1515/bchm2.1972.353.2.1099. [DOI] [PubMed] [Google Scholar]
  16. Neurath H., Walsh K. A. Role of proteolytic enzymes in biological regulation (a review). Proc Natl Acad Sci U S A. 1976 Nov;73(11):3825–3832. doi: 10.1073/pnas.73.11.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TRAUTSCHOLD I., WERLE E. [Spectrophotometric determination of kallikrein and its inactivators]. Hoppe Seylers Z Physiol Chem. 1961 Jun 30;325:48–59. doi: 10.1515/bchm2.1961.325.1.48. [DOI] [PubMed] [Google Scholar]
  18. WERLE E., TRAUTSCHOLD I. Kallikrein, kallidin, kallikrein inhibitors. Ann N Y Acad Sci. 1963 Feb 4;104:117–129. doi: 10.1111/j.1749-6632.1963.tb17657.x. [DOI] [PubMed] [Google Scholar]
  19. WHITEHOUSE M. W., ZILLIKEN F. Isolation and determination of neuraminic (sialic) acids. Methods Biochem Anal. 1960;8:199–220. doi: 10.1002/9780470110249.ch5. [DOI] [PubMed] [Google Scholar]
  20. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  22. Wünsch E., Drees F. Zur Synthese des Glucagons. X. Darstellung der Sequenz 22-29. Chem Ber. 1966 Jan;99(1):110–120. doi: 10.1002/cber.19660990119. [DOI] [PubMed] [Google Scholar]
  23. Zuber M., Sache E. Isolation and characterization of porcine pancreatic kallikrein. Biochemistry. 1974 Jul 16;13(15):3098–3110. doi: 10.1021/bi00712a016. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES