Skip to main content
Genetics logoLink to Genetics
. 1974 Feb;76(2):169–184. doi: 10.1093/genetics/76.2.169

Divergent Operons and the Genetic Structure of the Maltose B Region in ESCHERICHIA COLI K12

Maurice Hofnung 1
PMCID: PMC1213059  PMID: 4595640

Abstract

Complementation and polarity suppression data are interpreted in terms of the genetic structure of the maltose B region. It is proposed that this region comprises two divergent operons. One operon includes malK, a cistron involved in maltose permeation, and lamB the only known cistron specifically involved in λ receptor synthesis. The other operon includes malJ1 and malJ2 which are most probably two different cistrons, both involved in maltose permeation*. It is further assumed that expression of the two operons is controlled by malT, the positive regulatory gene of the maltose system, located in the malA region. The target(s) for the action of the malT product is (are) most likely to be located between malJ1 and malK. There is an indication that the two operons might overlap in the region of their promoters. The structure of such an overlap as well as the possible function of the products of the different cistrons in malB are briefly discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lever J. E. Purification and properties of a component of histidine transport in Salmonella typhimurium. The histidine-binding protein J. J Biol Chem. 1972 Jul 10;247(13):4317–4326. [PubMed] [Google Scholar]
  2. Morse D. E., Guertin M. Amber suA mutations which relieve polarity. J Mol Biol. 1972 Feb 14;63(3):605–608. doi: 10.1016/0022-2836(72)90453-6. [DOI] [PubMed] [Google Scholar]
  3. Pearson M. L. The role of adenosine 3',5'-cyclic monophosphate in the growth of bacteriophage lambda. Virology. 1972 Aug;49(2):605–609. doi: 10.1016/0042-6822(72)90513-2. [DOI] [PubMed] [Google Scholar]
  4. Randall-Hazelbauer L., Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol. 1973 Dec;116(3):1436–1446. doi: 10.1128/jb.116.3.1436-1446.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schwartz M., Hofnung M. La maltodextrine phosphorylase d'Escherichia coli. Eur J Biochem. 1967 Sep;2(2):132–145. doi: 10.1111/j.1432-1033.1967.tb00117.x. [DOI] [PubMed] [Google Scholar]
  6. Szybalski W., Bovre K., Fiandt M., Guha A., Hradecna Z., Kumar S., Lozeron H. A., Sr, Maher V. M., Nijkamp H. J., Summers W. C. Transcriptional controls in developing bacteriophages. J Cell Physiol. 1969 Oct;74(2 Suppl):33–70. doi: 10.1002/jcp.1040740405. [DOI] [PubMed] [Google Scholar]
  7. Thirion J. P., Hofnung M. On some genetic aspects of phage lambda resistance in E. coli K12. Genetics. 1972 Jun;71(2):207–216. doi: 10.1093/genetics/71.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES