Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Jul 1;134(1):242–264. doi: 10.1084/jem.134.1.242

CELL SURFACE IMMUNOGLOBULIN

II. ISOLATION AND CHARACTERIZATION OF IMMUNOGLOBULIN FROM MOUSE SPLENIC LYMPHOCYTES

Ellen S Vitetta 1, Sonia Baur 1, Jonathan W Uhr 1
PMCID: PMC2139024  PMID: 4104295

Abstract

The proteins on surfaces of living splenic lymphocytes from normal BALB/c mice were iodinated enzymatically. Such cells were fractionated into two sub-populations: one composed almost exclusively of small lymphocytes and the other mainly of large lymphocytes and plasma cells. Specific immunoprecipitation of radiolabeled surface Ig obtained from lysates of these cell populations indicated that approximately 2–3% of the acid-precipitable radioactivity from the cell surface is Ig. Moreover, 95% of the H chain radioactivity from the Ig of the small lymphocyte fraction and 90% from the large lymphocyte-plasma cell fraction was characterized as µ by precipitation with anti-µ sera as well as by molecular weight determination on polyacrylamide gels in sodium dodecyl sulfate. The Ig was recovered from the cell surface in the form of an IgM monomer. Control experiments suggested that the monomer did not result from depolymerization of 19S IgM by the methods used to radiolabel and isolate the molecule. 3H-tyrosine labeling of IgM produced by meyloma cells and radio-iodination of IgM in solution gave the same ratios of µL radioactivity as radiolabeling of IgM on cells, indicating that the tyrosine residues of L and µ-chains of cell surface IgM are available to the lactoperoxidase during the iodination. This is consistent with the hypothesis that cell surface IgM is entirely on the outside of the plasma membrane presumably attached to it by its Fc fragment. These results, together with previous reports by others, suggest that IgM, in its monomeric form, is the main antigen-specific receptor on lymphocytes of normal mice.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Byrt P. Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature. 1969 Jun 28;222(5200):1291–1292. doi: 10.1038/2221291a0. [DOI] [PubMed] [Google Scholar]
  2. Adinolfi M., Gardner B., Giannelli F., McGuire M. Studies on human lymphocytes stimulated in vitro with anti-gamma and anti-mu antibodies. Experientia. 1967 Apr 15;23(4):271–272. doi: 10.1007/BF02135679. [DOI] [PubMed] [Google Scholar]
  3. Baur S., Vitetta E. S., Sherr C. J., Schenkein I., Uhr J. W. Isolation of heavy and light chains of immunoglobulin from the surfaces of lymphoid cells. J Immunol. 1971 Apr;106(4):1133–1135. [PubMed] [Google Scholar]
  4. Bert G., Massaro A. L., Di Cossano D. L., Maja M. Electrophoretic study of immunoglobulins and immunoglobulin sub-units on the surface of human peripheral blood lymphocytes. Immunology. 1969 Jul;17(1):1–6. [PMC free article] [PubMed] [Google Scholar]
  5. Bosman C., Feldman J. D. The proportion and structure of cells forming antibody, gamma G and gamma M immunoglobulins, and gamma G and gamma M antibodies. Cell Immunol. 1970 May;1(1):31–50. doi: 10.1016/0008-8749(70)90059-6. [DOI] [PubMed] [Google Scholar]
  6. Bush S. T., Swedlund H. A., Gleich G. J. Low molecular weight IgM in human sera. J Lab Clin Med. 1969 Feb;73(2):194–201. [PubMed] [Google Scholar]
  7. Byrt P., Ada G. L. An in vitro reaction between labelled flagellin or haemocyanin and lymphocyte-like cells from normal animals. Immunology. 1969 Oct;17(4):503–516. [PMC free article] [PubMed] [Google Scholar]
  8. Clem I. W., De Boutaud F., Sigel M. M. Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J Immunol. 1967 Dec;99(6):1226–1235. [PubMed] [Google Scholar]
  9. Clem L. W., Small P. A., Jr Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med. 1967 May 1;125(5):893–920. doi: 10.1084/jem.125.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coombs R. R., Gurner B. W., Janeway C. A., Jr, Wilson A. B., Gell P. G., Kelus A. S. Immunoglobulin determinants on the lymphocytes of normal rabbits. I. Demonstration by the mixed antiglobulin reaction of determinants recognized by anti-gamma, anti-mu, anti-Fab and anti-allotype sera, anti-As4 and anti-As6. Immunology. 1970 Mar;18(3):417–429. [PMC free article] [PubMed] [Google Scholar]
  11. Daguillard F., Richter M. Cells involved in the immune response. XII. The differing responses of normal rabbit lymphoid cells to phytohemagglutinin, goat anti-rabbit immunoglobulin antiserum and allogeneic and xenogeneic lymphocytes. J Exp Med. 1969 Nov 1;130(5):1187–1208. doi: 10.1084/jem.130.5.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dwyer J. M., Mackay I. R. Antigen-binding lymphocytes in human blood. Lancet. 1970 Jan 24;1(7639):164–167. doi: 10.1016/s0140-6736(70)90406-x. [DOI] [PubMed] [Google Scholar]
  13. Frommel D., Perey D. Y., Masseyeff R., Good R. A. Low molecular weight serum immunoglobulin M in experimental trypanosomiasis. Nature. 1970 Dec 19;228(5277):1208–1210. doi: 10.1038/2281208a0. [DOI] [PubMed] [Google Scholar]
  14. Gleich G. J., Uhr J. W., Vaughan J. H., Swedlund H. A. Antibody formation in dysgammaglobulinemia. J Clin Invest. 1966 Aug;45(8):1334–1340. doi: 10.1172/JCI105440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greaves M. F., Möller E., Möller G. Studies on antigen-binding cells. II. Relationship to antigen-sensitive cells. Cell Immunol. 1970 Oct;1(4):386–403. doi: 10.1016/0008-8749(70)90016-x. [DOI] [PubMed] [Google Scholar]
  16. Greaves M. F., Möller E. Studies on antigen-binding cells. I. The origin of reactive cells. Cell Immunol. 1970 Oct;1(4):372–385. doi: 10.1016/0008-8749(70)90015-8. [DOI] [PubMed] [Google Scholar]
  17. Greaves M. F., Torrigiani G., Roitt I. M. Blocking of the lymphocyte receptor site for cell mediated hypersensitivity and transplantation reactions by anti-light chain sera. Nature. 1969 May 31;222(5196):885–886. doi: 10.1038/222885a0. [DOI] [PubMed] [Google Scholar]
  18. Hunter A., Feinstein A., Coombs R. R. Immunoglobulin class of antibodies to cow's milk casein in infant sera and evidence for low molecular weight IgM antibodies. Immunology. 1968 Sep;15(3):381–388. [PMC free article] [PubMed] [Google Scholar]
  19. Klein F., Mattern P., Radema H., Van Zwet T. L. Slowly sedimenting serum components reacting with anti-IgM sera. Immunology. 1967 Dec;13(6):641–647. [PMC free article] [PubMed] [Google Scholar]
  20. Leslie G. A., Clem L. W. Phylogen of immunoglobulin structure and function. 3. Immunoglobulins of the chicken. J Exp Med. 1969 Dec 1;130(6):1337–1352. doi: 10.1084/jem.130.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu C. T., Das B. R., Maurer P. H. Immunochemical studies of the tryptic, chymotryptic and peptic peptides of heat denatured bovine serum albumin. Immunochemistry. 1967 Jan;4(1):1–10. doi: 10.1016/0019-2791(67)90191-7. [DOI] [PubMed] [Google Scholar]
  22. MAKELA O., NOSSAL G. J. Bacterial adherence: a method for detecting antibody production by single cells. J Immunol. 1961 Oct;87:447–456. [PubMed] [Google Scholar]
  23. Maizel J. V., Jr Acrylamide-gel electrophorograms by mechanical fractionation: radioactive adenovirus proteins. Science. 1966 Feb 25;151(3713):988–990. doi: 10.1126/science.151.3713.988. [DOI] [PubMed] [Google Scholar]
  24. Mandel T., Byrt P., Ada G. L. A morphological examination of antigen reactive cells from mouse spleen and peritoneal cavity. Exp Cell Res. 1969 Nov;58(1):179–182. doi: 10.1016/0014-4827(69)90132-3. [DOI] [PubMed] [Google Scholar]
  25. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marchalonis J. J., Edelman G. M. Phylogenetic origins of antibody structure. 3. Antibodies in the primary immune response of the sea lamprey, Petromyzon marinus. J Exp Med. 1968 May 1;127(5):891–914. doi: 10.1084/jem.127.5.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marchalonis J., Edelman G. M. Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med. 1965 Sep 1;122(3):601–618. doi: 10.1084/jem.122.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marcuson E. C., Roitt I. M. Immunoglobulin allotypic determinants on rabbit lymphocytes. Nature. 1970 Sep 5;227(5262):1051–1053. doi: 10.1038/2271051a0. [DOI] [PubMed] [Google Scholar]
  29. Marcuson E. C., Roitt I. M. Transformation of rabbit lymphocytes by anti-allotype serum: ultrastructure of transformed cells and suppression of responding cells by foetal exposure to anti-allotype serum. Immunology. 1969 Jun;16(6):791–802. [PMC free article] [PubMed] [Google Scholar]
  30. Mason S., Warner N. L. The immunoglobulin nature of the antigen recognition site on cells mediating transplantation immunity and delayed hypersentivity. J Immunol. 1970 Mar;104(3):762–765. [PubMed] [Google Scholar]
  31. McConnell I., Munro A., Gurner B. W., Coombs R. R. Studies on actively allergized cells. I. The cyto-dynamics and morphology of rosete-forming lymph node cells in mice and inhibition of rosette-formation with antibody to mouse immunoglobulins. Int Arch Allergy Appl Immunol. 1969;35(3):209–227. [PubMed] [Google Scholar]
  32. Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):801–820. doi: 10.1084/jem.128.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mitchell G. F., Miller J. F. Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A. 1968 Jan;59(1):296–303. doi: 10.1073/pnas.59.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. NOSSAL G. J., SZENBERG A., ADA G. L., AUSTIN C. M. SINGLE CELL STUDIES ON 19S ANTIBODY PRODUCTION. J Exp Med. 1964 Mar 1;119:485–502. doi: 10.1084/jem.119.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nossal G. J., Cunningham A., Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J Exp Med. 1968 Oct 1;128(4):839–853. doi: 10.1084/jem.128.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. ORLANS E., ROSE M. E., MARRACK J. R. Fowl antibody. I. Some physical and immunochemical properties. Immunology. 1961 Jul;4:262–277. [PMC free article] [PubMed] [Google Scholar]
  38. Oppenheim J. J., Rogentine G. N., Terry W. D. The transformation of human lymphocytes by monkey antisera to human immunoglobulins. Immunology. 1969 Jan;16(1):123–138. [PMC free article] [PubMed] [Google Scholar]
  39. Oudin J., Michel M. Idiotypy of rabbit antibodies. II. Comparison of idiotypy of various kinds of antibodies formed in the same rabbits against Salmonella typhi. J Exp Med. 1969 Sep 1;130(3):619–642. doi: 10.1084/jem.130.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Paraskevas F., Lee S. T., Israels L. G. Absence of gamma-globulin receptors on mouse plasmacytoma cells. Nature. 1970 Jul 25;227(5256):395–397. doi: 10.1038/227395a0. [DOI] [PubMed] [Google Scholar]
  41. Paraskevas F., Lee S. T., Israels L. G. Cell surface associated gamma globulins in lymphocytes. I. Reverse immune cytoadherence: a technique for their detection in mouse and human lymphocytes. J Immunol. 1971 Jan;106(1):160–170. [PubMed] [Google Scholar]
  42. Parkhouse R. M., Askonas B. A. Immunoglobulin M biosynthesis. Intracellular accumulation of 7S subunits. Biochem J. 1969 Nov;115(2):163–169. doi: 10.1042/bj1150163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Perchalski J. E., Clem L. W., Small P. A., Jr 7S gamma-M immunoglobulins in normal human cord serum. Am J Med Sci. 1968 Aug;256(2):107–111. doi: 10.1097/00000441-196808000-00006. [DOI] [PubMed] [Google Scholar]
  44. Pernis B., Forni L., Amante L. Immunoglobulin spots on the surface of rabbit lymphocytes. J Exp Med. 1970 Nov;132(5):1001–1018. doi: 10.1084/jem.132.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Phillips D. R., Morrison M. The arrangement of proteins in the human erythrocyte membrane. Biochem Biophys Res Commun. 1970 Jul 27;40(2):284–289. doi: 10.1016/0006-291x(70)91007-7. [DOI] [PubMed] [Google Scholar]
  46. ROTHFIELD N. F., FRANGIONE B., FRANKLIN E. C. SLOWLY SEDIMENTING MERCAPTOETHANOL-RESISTANT ANTINUCLEAR FACTORS RELATED ANTIGENICALLY TO M IMMUNOGLOBULINS (GAMMA-1M-GLOBULIN) IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS. J Clin Invest. 1965 Jan;44:62–72. doi: 10.1172/JCI105127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rabellino E., Colon S., Grey H. M., Unanue E. R. Immunoglobulins on the surface of lymphocytes. I. Distribution and quantitation. J Exp Med. 1971 Jan 1;133(1):156–167. doi: 10.1084/jem.133.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Raff M. C., Sternberg M., Taylor R. B. Immunoglobulin determinants on the surface of mouse lymphoid cells. Nature. 1970 Feb 7;225(5232):553–554. doi: 10.1038/225553a0. [DOI] [PubMed] [Google Scholar]
  49. Raff M. C. Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology. 1970 Oct;19(4):637–650. [PMC free article] [PubMed] [Google Scholar]
  50. Raidt D. J., Mishell R. I., Dutton R. W. Cellular events in the immune response : analysis and in vitro response of mouse spleen cell populations separated by differential flotation in albumin gradients. J Exp Med. 1968 Oct 1;128(4):681–698. doi: 10.1084/jem.128.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. SANDOR G., KORACH S., MATTERN P. 7S GLOBULIN, IMMUNOLOGICALLY IDENTICAL TO 19S GAMMA-1 (BETA-2)-M-GLOBULIN, A NEW PROTEIN OR HORSE SERUM. Nature. 1964 Nov 21;204:795–796. doi: 10.1038/204795a0. [DOI] [PubMed] [Google Scholar]
  52. Sell S., Gell P. G. Studies on rabbit lymphocytes in vitro. IV. Blast transformation of the lymphocytes from newborn rabbits induced by antiallotype serum to a paternal IgG allotype not present in the serum of the lymphocyte donors. J Exp Med. 1965 Nov 1;122(5):923–928. doi: 10.1084/jem.122.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  54. Sherr C. J., Uhr J. W. Immunoglobulin synthesis and secretion. VI. Synthesis and intracellular transport of immunoglobulin in nonsecretory lymphoma cells. J Exp Med. 1971 Apr 1;133(4):901–920. doi: 10.1084/jem.133.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Skamene E., Ivanyi J. Lymphocyte transformation by H-chain specific anti-immunoglobulin sera. Nature. 1969 Feb 15;221(5181):681–682. doi: 10.1038/221681a0. [DOI] [PubMed] [Google Scholar]
  56. Solomon A., Kunkel H. G. A "monoclonal" type, low molecular weight protein related to gamma-M-macroglobulins. Am J Med. 1967 Jun;42(6):958–967. doi: 10.1016/0002-9343(67)90076-9. [DOI] [PubMed] [Google Scholar]
  57. Solomon A. Molecular heterogeneity of immunoglobulin-M (gammaM-globulin). J Immunol. 1969 Feb;102(2):496–506. [PubMed] [Google Scholar]
  58. Stobo J. D., Tomasi T. B. A Low Molecular Weight Immunoglobulin Antigenically Related to 19 S IgM. J Clin Invest. 1967 Aug;46(8):1329–1337. doi: 10.1172/JCI105625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Suran A. A., Tarail M. H., Papermaster B. W. Immunoglobulins of the leopard shark. I. Isolation and characterization of 17 S and 7 S immunoglobulins with precipitating activity. J Immunol. 1967 Oct;99(4):679–686. [PubMed] [Google Scholar]
  60. Suzuki T., Deutsch H. F. Dissociation, reaggregation, and subunit structure studies of some human gamma-M-globulins. J Biol Chem. 1967 Jun 10;242(11):2725–2738. [PubMed] [Google Scholar]
  61. Van Furth R. The formation of immunoglobulins by circulating lymphocytes. Semin Hematol. 1969 Jan;6(1):84–103. [PubMed] [Google Scholar]
  62. Wang A. C., Wilson K. S., Hopper J. E., Fudenberg H. H., Nisonoff A. Evidence for control of synthesis of the varible regions of the heavy chains of immunoglobulins G and M by the same gene. Proc Natl Acad Sci U S A. 1970 Jun;66(2):337–343. doi: 10.1073/pnas.66.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Warner N. L., Byrt P., Ada G. L. Blocking of the lymphocyte antigen receptor site with anti-immunoglobulin sera in vitro. Nature. 1970 Jun 6;226(5249):942–943. doi: 10.1038/226942a0. [DOI] [PubMed] [Google Scholar]
  64. Zaalberg O. B., van der Meul V. A., van Twisk M. J. Antibody production by isolated spleen cells: a study of the cluster and the plaque techniques. J Immunol. 1968 Feb;100(2):451–458. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES