Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Dec 1;152(6):1734–1744. doi: 10.1084/jem.152.6.1734

Regulation of murine macrophage Ia-antigen expression by products of activated spleen cells

PMCID: PMC2186042  PMID: 6450260

Abstract

This investigation examined the effects of mediators derived form activated spleen cells on macrophage Ia-antigen expression and function. Incubation of adherent thioglycollate-induced murine peritoneal macrophages(> 90% Ia-) with concanavalin A (Con A)- stimulated spleen cell supernate (Con A sup) resulted in a dose- dependent increase in the percentage of Ia-containing (Ia+) phagocytic cells, as detected by antiserum-and-complement-mediated cytotoxicity. The Ia-antigen expression of macrophages incubated with unstimulated spleen cell supernate supplemented with Con A (Control sup) declined. Pretreatment of the macrophages with anti-Ia and complement before addition of the Con A sup did not inhibit subsequent Ia-antigen expression, suggesting that Ia- macropohages were converted to Ia+ cells. These findings were not a result of adsorption of soluble Ia- antigen from the Con A sup, because Ia-antigen expression was detected by an antiserum specific for the haplotype of the macrophages but not that of the allogeneic spleen cells from which the supernate was prepared. Con A sup-cultured macrophages also stimulated the proliferation of allogeneic spleen cells significantly better than Control sup-cultured macrophages in the mixed leukocyte reaction (MLR). Pretreatment of Con A sup-cultured macrophages with anti-Ia and complement before addition of splenic responder cells abrogated their stimulatory capacity, indicating the Ia dependence of the MLR. We hypothesize that regulatory lymphokine(s) can induce both the expression of the Ia+ phenotype by macrophages and the functional capability to stimulate the MLR, and that macrophages lose these capabilities in the absence of such mediator(s).

Full Text

The Full Text of this article is available as a PDF (644.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beller D. I., Kiely J. M., Unanue E. R. Regulation of macrophage populations. I. Preferential induction of Ia-rich peritoneal exudates by immunologic stimuli. J Immunol. 1980 Mar;124(3):1426–1432. [PubMed] [Google Scholar]
  2. Beller D. I., Unanue E. R. IA antigens and antigen-presenting function of thymic macrophages. J Immunol. 1980 Mar;124(3):1433–1440. [PubMed] [Google Scholar]
  3. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  4. Cowing C., Pincus S. H., Sachs D. H., Dickler H. B. A subpopulation of adherent accessory cells bearing both I-A and I-E or C subregion antigens is required for antigen-specific murine T lymphocyte proliferation. J Immunol. 1978 Nov;121(5):1680–1686. [PubMed] [Google Scholar]
  5. Cowing C., Schwartz B. D., Dickler H. B. Macrophage Ia antigens. I. macrophage populations differ in their expression of Ia antigens. J Immunol. 1978 Feb;120(2):378–384. [PubMed] [Google Scholar]
  6. Farr A. G., Kiely J. M., Unanue E. R. Macrophage-T cell interactions involving Listeria monocytogenes--role of the H-2 gene complex. J Immunol. 1979 Jun;122(6):2395–2404. [PubMed] [Google Scholar]
  7. Farr A. G., Wechter W. J., Kiely J. M., Unanue E. R. Induction of cytocidal macrophages after in vitro interactions between Listeria-immune T cells and macrophages--role of H-2. J Immunol. 1979 Jun;122(6):2405–2412. [PubMed] [Google Scholar]
  8. Greineder D. K., Shevach E. M., Rosenthal A. S. Macrophage-lymphocyte interaction. III. Site of alloantiserum inhibition of T lymphocyte proliferation induced by allogeneic or aldehyde-bearing cells. J Immunol. 1976 Oct;117(4):1261–1266. [PubMed] [Google Scholar]
  9. Habu S., Hayakawa K., Okumura K. Characterization of Ia-positive peritoneal exudate cells which augment concanavalin A response of T cells. Cell Immunol. 1979 Oct;47(2):416–423. doi: 10.1016/0008-8749(79)90351-4. [DOI] [PubMed] [Google Scholar]
  10. Kurland J. I., Pelus L. M., Ralph P., Bockman R. S., Moore M. A. Induction of prostaglandin E synthesis in normal and neoplastic macrophages: role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation. Proc Natl Acad Sci U S A. 1979 May;76(5):2326–2330. doi: 10.1073/pnas.76.5.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee K. C. On the origin and mode of action of functionally distinct macrophage subpopulations. Mol Cell Biochem. 1980 Mar 20;30(1):39–55. doi: 10.1007/BF00215304. [DOI] [PubMed] [Google Scholar]
  12. Lin H. S., Gordon S. Secretion of plasminogen activator by bone marrow-derived mononuclear phagocytes and its enhancement by colony-stimulating factor. J Exp Med. 1979 Aug 1;150(2):231–245. doi: 10.1084/jem.150.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lonai P., Steinman L. Physiological regulation of antigen binding to T cells: role of a soluble macrophage factor and of interferon. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5662–5666. doi: 10.1073/pnas.74.12.5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Minami M., Shreffler D. C., Cowing C. Characterization of the stimulator cells in the murine primary mixed leukocyte response. J Immunol. 1980 Mar;124(3):1314–1321. [PubMed] [Google Scholar]
  15. Moore R. N., Oppenheim J. J., Farrar J. J., Carter C. S., Jr, Waheed A., Shadduck R. K. Production of lymphocyte-activating factor (Interleukin 1) by macrophages activated with colony-stimulating factors. J Immunol. 1980 Sep;125(3):1302–1305. [PubMed] [Google Scholar]
  16. Moore R. N., Urbaschek R., Wahl L. M., Mergenhagen S. E. Prostaglandin regulation of colony-stimulating factor production by lipopolysaccharide-stimulated murine leukocytes. Infect Immun. 1979 Nov;26(2):408–414. doi: 10.1128/iai.26.2.408-414.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nogueira N., Cohn Z. A. Trypanosoma cruzi: in vitro induction of macrophage microbicidal activity. J Exp Med. 1978 Jul 1;148(1):288–300. doi: 10.1084/jem.148.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pike B. L., Robinson W. A. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970 Aug;76(1):77–84. doi: 10.1002/jcp.1040760111. [DOI] [PubMed] [Google Scholar]
  19. Richman L. K., Klingenstein R. J., Richman J. A., Strober W., Berzofsky J. A. The murine Kupffer cell. I. Characterization of the cell serving accessory function in antigen-specific T cell proliferation. J Immunol. 1979 Dec;123(6):2602–2609. [PubMed] [Google Scholar]
  20. Rosenstreich D. L., Vogel S. N., Jacques A. R., Wahl L. M., Oppenheim J. J. Macrophage sensitivity to endotoxin: genetic control by a single codominant gene. J Immunol. 1978 Nov;121(5):1664–1670. [PubMed] [Google Scholar]
  21. Schwartz R. H., Fathman C. G., Sachs D. H. Inhibition of stimulation in murine mixed lymphocyte cultures with an alloantiserum directed against a shared Ia determinant. J Immunol. 1976 Apr;116(4):929–935. [PubMed] [Google Scholar]
  22. Steinman R. M., Kaplan G., Witmer M. D., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J Exp Med. 1979 Jan 1;149(1):1–16. doi: 10.1084/jem.149.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart C. C., Lin H. Macrophage growth factor and its relationship to colony stimulating factor. J Reticuloendothel Soc. 1978 Apr;23(4):269–285. [PubMed] [Google Scholar]
  24. Vogel S. N., Rosenstreich D. L. Defective Fc receptor-mediated phagocytosis in C3H/HeJ macrophages. I. Correction by lymphokine-induced stimulation. J Immunol. 1979 Dec;123(6):2842–2850. [PubMed] [Google Scholar]
  25. Watson J. Differentiation of B lymphocytes in C3H/HeJ mice: the induction of Ia antigens by lipopolysaccharide. J Immunol. 1977 Mar;118(3):1103–1108. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES