Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1982 Jul 1;156(1):112–127. doi: 10.1084/jem.156.1.112

Enhanced production of murine interferon gamma by T cells generated in response to bacterial infection

PMCID: PMC2186726  PMID: 6177817

Abstract

Spleen cell cultures derived from animals infected 6 d earlier with Listeria monocytogenes produced 10-20-fold more murine interferon gamma (MuIFN gamma) than spleen cells from nonimmune mice in response to stimulation with T cell mitogens. A striking temporal association was found between the enhanced synthesis of MuIFN gamma and the development of anti-Listeria immunity in that both the potential for increased MuIFN gamma production and the generation of Listeria-protective T cells developed and then decayed in unison. Treatment of spleen cells with monoclonal anti-Thy-1.2 plus complement virtually abolished the ability of cells from Listeria-immune mice to synthesize MuIFN gamma. The T cells producing MuIFN gamma were found to be more susceptible to complement-mediated lysis with monoclonal anti-Lyt-1.2 than with monoclonal anti-Lyt-2.2. The production of MuIFN gamma was not affected by treating spleen cells with anti-IgG antisera or with a monoclonal antibody directed against I-A specificities. MuIFN gamma was detected 4 h after the beginning of mitogenic stimulation of spleen cell cultures, and peak levels of MuIFN gamma were reached by 18 h. The IFN synthesized by mitogen-induced spleen cells derived from Listeria- immune mice were relatively labile at pH 2.0 and neutralized by a rabbit anti-MuIFN gamma serum but not by an antiserum having specificities for MuIFN alpha and MuIFN beta. The apparent molecular weight of the MuIFN gamma, as estimated by molecular sieving on a Bio- gel P-60 column, was estimated to be 38,000, and the isoelectric point as determined by chromatofocusing was extremely heterogeneous, ranging between pH 5.0 and pH 7.0.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blalock J. E., Georgiades J. A., Langford M. P., Johnson H. M. Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. Cell Immunol. 1980 Feb;49(2):390–394. doi: 10.1016/0008-8749(80)90041-6. [DOI] [PubMed] [Google Scholar]
  2. Bloom B. R., Stoner G., Gaffney J., Shevach E., Green I. Production of migration inhibitory factor and lymphotoxin by non-T cells. Eur J Immunol. 1975 Mar;5(3):218–220. doi: 10.1002/eji.1830050314. [DOI] [PubMed] [Google Scholar]
  3. Dianzani F., Salter L., Fleischmann W. R., Jr, Zucca M. Immune interferon activates cells more slowly than does virus-induced interferon. Proc Soc Exp Biol Med. 1978 Oct;159(1):94–97. doi: 10.3181/00379727-159-40291. [DOI] [PubMed] [Google Scholar]
  4. Dorner F., Scriba M., Weil R. Interferon: evidence for its glycoprotein nature. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1981–1985. doi: 10.1073/pnas.70.7.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Erickson J. S., Paucker K. Molecular species of interferon induced in mouse L cells by Newcastle disease virus and polyriboinosinic-polyribocytidylic acid. J Gen Virol. 1979 Jun;43(3):521–529. doi: 10.1099/0022-1317-43-3-521. [DOI] [PubMed] [Google Scholar]
  6. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  7. Fujisawa J. U., Kawade Y. Properties of nonglycosylated and glycosidase-treated mouse L cell interferon species. Virology. 1981 Jul 30;112(2):480–486. doi: 10.1016/0042-6822(81)90295-6. [DOI] [PubMed] [Google Scholar]
  8. Gifford G. E., Tibor A., Peavy D. L. Interferon production in mixed lymphocyte cell cultures. Infect Immun. 1971 Jan;3(1):164–166. doi: 10.1128/iai.3.1.164-166.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glasgow L. A., Crane J. L., Jr, Kern E. R., Youngner J. S. Antitumor activity of interferon against murine osteogenic sarcoma in vitro and in vivo. Cancer Treat Rep. 1978 Nov;62(11):1881–1888. [PubMed] [Google Scholar]
  10. Havell E. A., Carter W. A. Effect of tunicamycin on the physical properties and antiviral activities of murine L cell interferon. Virology. 1981 Jan 15;108(1):80–86. doi: 10.1016/0042-6822(81)90528-6. [DOI] [PubMed] [Google Scholar]
  11. Havell E. A., Hayes T. G., Vilcek J. Synthesis of two distinct interferons by human fibroblasts. Virology. 1978 Aug;89(1):330–334. doi: 10.1016/0042-6822(78)90068-5. [DOI] [PubMed] [Google Scholar]
  12. Havell E. A. Isolation of a subspecies of murine interferon antigenically related to human leukocyte interferon. Virology. 1979 Jan 30;92(2):324–330. doi: 10.1016/0042-6822(79)90137-5. [DOI] [PubMed] [Google Scholar]
  13. Havell E. A. Qualitative and quantitative virus-yield assay for antibody neutralization of interferons. Methods Enzymol. 1981;79(Pt B):575–582. doi: 10.1016/s0076-6879(81)79077-3. [DOI] [PubMed] [Google Scholar]
  14. Havell E. A., Spitalny G. L. The induction and characterization of interferon from pure cultures of murine macrophages. Ann N Y Acad Sci. 1980;350:413–421. doi: 10.1111/j.1749-6632.1980.tb20643.x. [DOI] [PubMed] [Google Scholar]
  15. Havell E. A., Vilcek J., Falcoff E., Berman B. Suppression of human interferon production by inhibitors of glycosylation. Virology. 1975 Feb;63(2):475–483. doi: 10.1016/0042-6822(75)90320-7. [DOI] [PubMed] [Google Scholar]
  16. Havell E. A., Vilcek J. Production of high-titered interferon in cultures of human diploid cells. Antimicrob Agents Chemother. 1972 Dec;2(6):476–484. doi: 10.1128/aac.2.6.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Havell E. A., Yamazaki S., Vilcek J. Altered molecular species of human interferon produced in the presence of inhibitors of glycosylation. J Biol Chem. 1977 Jun 25;252(12):4425–4427. [PubMed] [Google Scholar]
  18. Johnson H. M., Stanton G. J., Baron S. Relative ability of mitogens to stimulate production of interferon by lymphoid cells and to induce suppression of the in vitro immune response. Proc Soc Exp Biol Med. 1977 Jan;154(1):138–141. [PubMed] [Google Scholar]
  19. Kirchner H., Zawatzky R., Schirrmacher V. Interferon production in the murine mixed lymphocyte culture. I. Interferon production caused by differences in the H-2 K and H-2 D region but not by differences in the I region or the M locus. Eur J Immunol. 1979 Jan;9(1):97–99. doi: 10.1002/eji.1830090121. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Ledbetter J. A., Rouse R. V., Micklem H. S., Herzenberg L. A. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980 Aug 1;152(2):280–295. doi: 10.1084/jem.152.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leonard E. J., Ruco L. P., Meltzer M. S. Characterization of macrophage activation factor, a lymphokine that causes macrophages to become cytotoxic for tumor cells. Cell Immunol. 1978 Dec;41(2):347–357. doi: 10.1016/0008-8749(78)90232-0. [DOI] [PubMed] [Google Scholar]
  23. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagata S., Brack C., Henco K., Schamböck A., Weissmann C. Partial mapping of ten genes of the human interferon- alpha family. J Interferon Res. 1981 Feb;1(2):333–336. doi: 10.1089/jir.1981.1.333. [DOI] [PubMed] [Google Scholar]
  25. North R. J. Cellular mediators of anti-Listeria immunity as an enlarged population of short lived, replicating T cells. Kinetics of their production. J Exp Med. 1973 Aug 1;138(2):342–355. doi: 10.1084/jem.138.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. North R. J. Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol. 1973 Apr;7(1):166–176. doi: 10.1016/0008-8749(73)90193-7. [DOI] [PubMed] [Google Scholar]
  27. North R. J., Spitalny G. Inflammatory lymphocyte in cell-mediated antibacterial immunity: factors governing the accumulation of mediator T cells in peritoneal exudates. Infect Immun. 1974 Sep;10(3):489–498. doi: 10.1128/iai.10.3.489-498.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
  29. Parks D. R., Bryan V. M., Oi V. T., Herzenberg L. A. Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1962–1966. doi: 10.1073/pnas.76.4.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perussia B., Mangoni L., Engers H. D., Trinchieri G. Interferon production by human and murine lymphocytes in response to alloantigens. J Immunol. 1980 Oct;125(4):1589–1595. [PubMed] [Google Scholar]
  31. Salvin S. B., Youngner J. S., Lederer W. H. Migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. Infect Immun. 1973 Jan;7(1):68–75. doi: 10.1128/iai.7.1.68-75.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Snodgrass M. J., Lowrey D. S., Hanna M. G., Jr Changes induced by lactic dehydrogenase virus in thymus and thymus-dependent areas of lymphatic tissue. J Immunol. 1972 Apr;108(4):877–892. [PubMed] [Google Scholar]
  33. Sonnenfeld G., Mandel A. D., Merigan T. C. In vitro production and cellular origin of murine type II interferon. Immunology. 1979 Apr;36(4):883–890. [PMC free article] [PubMed] [Google Scholar]
  34. Sonnenfeld G., Mandel A. D., Merigan T. C. The immunosuppressive effect of type II mouse interferon preparations on antibody production. Cell Immunol. 1977 Dec;34(2):193–206. doi: 10.1016/0008-8749(77)90243-x. [DOI] [PubMed] [Google Scholar]
  35. Stancek D., Gressnerová M., Paucker K. Isoelectric components of mouse, human, and rabbit interferons. Virology. 1970 Aug;41(4):740–750. doi: 10.1016/0042-6822(70)90438-1. [DOI] [PubMed] [Google Scholar]
  36. Stefanos S., Catinot L., Wietzerbin J., Falcoff E. Production of antibodies against mouse immune T (type II) interferon and their neutralizing properties. J Gen Virol. 1980 Sep;50(1):225–229. doi: 10.1099/0022-1317-50-1-225. [DOI] [PubMed] [Google Scholar]
  37. Valle M. J., Jordan G. W., Haahr S., Merigan T. C. Characteristics of immune interferon produced by human lymphocyte cultures compared to other human interferons. J Immunol. 1975 Jul;115(1):230–233. [PubMed] [Google Scholar]
  38. Virelizier J. L., Chan E. L., Allison A. C. Immunosuppressive effects of lymphocyte (type II) and leucocyte (type I) interferon on primary antibody responses in vivo and in vitro. Clin Exp Immunol. 1977 Nov;30(2):299–304. [PMC free article] [PubMed] [Google Scholar]
  39. Watson J., Gillis S., Marbrook J., Mochizuki D., Smith K. A. Biochemical and biological characterization of lymphocyte regulatory molecules. I. Purification of a class of murine lymphokines. J Exp Med. 1979 Oct 1;150(4):849–861. doi: 10.1084/jem.150.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wheelock E. F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science. 1965 Jul 16;149(3681):310–311. doi: 10.1126/science.149.3681.310. [DOI] [PubMed] [Google Scholar]
  41. Wietzerbin J., Stefanos S., Lucero M., Falcoff E., O'Malley J. A., Sulkowski E. Physico-chemical characterization and partial purification of mouse immune interferon. J Gen Virol. 1979 Sep;44(3):773–781. doi: 10.1099/0022-1317-44-3-773. [DOI] [PubMed] [Google Scholar]
  42. Yamamoto Y., Kawade Y. Antigenicity of mouse interferons: distinct antigenicity of the two L cell interferon species. Virology. 1980 May;103(1):80–88. doi: 10.1016/0042-6822(80)90127-0. [DOI] [PubMed] [Google Scholar]
  43. Yip Y. K., Barrowclough B. S., Urban C., Vilcek J. Molecular weight of human gamma interferon is similar to that of other human interferons. Science. 1982 Jan 22;215(4531):411–413. doi: 10.1126/science.6173921. [DOI] [PubMed] [Google Scholar]
  44. Yip Y. K., Pang R. H., Oppenheim J. D., Nachbar M. S., Henriksen D., Zerebeckyj-Eckhardt I., Vilcek J. Stimulation of human gamma interferon production by diterpene esters. Infect Immun. 1981 Oct;34(1):131–139. doi: 10.1128/iai.34.1.131-139.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yip Y. K., Pang R. H., Urban C., Vilcek J. Partial purification and characterization of human gamma (immune) interferon. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1601–1605. doi: 10.1073/pnas.78.3.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yoshida T., Sonozaki H., Cohen S. The production of migration inhibition factor by B and T cells of the guinea pig. J Exp Med. 1973 Oct 1;138(4):784–797. doi: 10.1084/jem.138.4.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Youngner J. S., Salvin S. B. Production and properties of migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. J Immunol. 1973 Dec;111(6):1914–1922. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES