Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 May;134(2):446–457. doi: 10.1128/jb.134.2.446-457.1978

Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4.

K Matsumoto, A Toh-e, Y Oshima
PMCID: PMC222272  PMID: 207666

Abstract

Temperature-sensitive (ts) mutants for the gal80 and gal4 genes of Saccharomyces cerevisiae were isolated and characterized. These mutants were classified into two categories; one showed thermolability (TL) and the other showed temperature-sensitive synthesis (TSS) of the respective products. Both the TL and TSS gal80 mutants are constitutive for galactokinase activity at 35 degrees C and, because they are derived from a dominant super-repressible GAL80s mutant, are uninducible at 25 degrees C. Both the TL and TSS gal4 mutants are galactose negative at 35 degrees C and galactose positive at 25 degrees C. None of the ts gal4 mutations affected the thermolability of galactokinase activity in cell extracts. Induction of galactokinase activity was studied with these mutants. The results indicate that the gal80 gene codes for a repressor and the gal4 gene codes for a positive factor indispensable for the expression of the structural genes or their products. However, striking evidence that the expression of the gal4 gene is constitutive and not under the control of gal80 was provided by a kinetic study with the TL gal4 mutant. The TL gal4 mutant pregrown in glycerol nutrient medium at 35 degrees C showed a prolonged lag period (35 min) in the induction of galactokinase activity at 25 degrees C, whereas the same mutant pregrown at 25 degrees C showed the same lag period as those observed in the wild-type strain and a revertant clone derived from the TL gal4 mutant (15 min).

Full text

PDF
446

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. G. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol. 1972 Aug;111(2):308–315. doi: 10.1128/jb.111.2.308-315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams B. G. Method for decryptification of -glucosidase in yeast with dimethyl sulfoxide. Anal Biochem. 1972 Jan;45(1):137–146. doi: 10.1016/0003-2697(72)90014-0. [DOI] [PubMed] [Google Scholar]
  3. Bassel J., Mortimer R. Genetic order of the galactose structural genes in Saccharomyces cerevisiae. J Bacteriol. 1971 Oct;108(1):179–183. doi: 10.1128/jb.108.1.179-183.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bossinger J., Cooper T. G. Sequence of molecular events involved in induction of allophanate hydrolase. J Bacteriol. 1976 Apr;126(1):198–204. doi: 10.1128/jb.126.1.198-204.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douglas H. C., Hawthorne C. D. Uninducible mutants in the gal i locus of Saccharomyces cerevisiae. J Bacteriol. 1972 Mar;109(3):1139–1143. doi: 10.1128/jb.109.3.1139-1143.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas H. C., Hawthorne D. C. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics. 1966 Sep;54(3):911–916. doi: 10.1093/genetics/54.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HORIUCHI T., HORIUCHI S., NOVICK A. A temperature-sensitive regulatory system. J Mol Biol. 1961 Oct;3:703–704. doi: 10.1016/s0022-2836(61)80035-1. [DOI] [PubMed] [Google Scholar]
  9. Horiuchi T., Novick A. Studies of a thermolabile repressor. Biochim Biophys Acta. 1965 Dec 9;108(4):687–696. doi: 10.1016/0005-2787(65)90064-x. [DOI] [PubMed] [Google Scholar]
  10. Klar A. J., Halvorson H. O. Effect of GAL4 gene dosage on the level of galactose catabolic enzymes in Saccharomyces cerevisiae. J Bacteriol. 1976 Jan;125(1):379–381. doi: 10.1128/jb.125.1.379-381.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klar A. J., Halvorson H. O. Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae. Mol Gen Genet. 1974;135(3):203–212. doi: 10.1007/BF00268616. [DOI] [PubMed] [Google Scholar]
  12. Morris H., Schlesinger M. J., Bracha M., Yagil E. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase. J Bacteriol. 1974 Aug;119(2):583–592. doi: 10.1128/jb.119.2.583-592.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nogi Y., Matsumoto K., Toh-e A., Oshima Y. Interaction of super-repressible and dominant constitutive mutations for the synthesis of galactose pathway enzymes in Saccharomyces cerevisiae. Mol Gen Genet. 1977 Apr 29;152(3):137–144. doi: 10.1007/BF00268810. [DOI] [PubMed] [Google Scholar]
  14. SADLER J. R., NOVICK A. THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. J Mol Biol. 1965 Jun;12:305–327. doi: 10.1016/s0022-2836(65)80255-8. [DOI] [PubMed] [Google Scholar]
  15. Tsuyumu S., Adams B. G. Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules. Genetics. 1974 Jul;77(3):491–505. doi: 10.1093/genetics/77.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES