Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1091–1095. doi: 10.1128/jb.113.3.1091-1095.1973

Close Linkage of the Genes serC (for Phosphohydroxy Pyruvate Transaminase) and serS (for Seryl-Transfer Ribonucleic Acid Synthetase) in Escherichia coli K-12

S J Clarke a,1, B Low b, W H Konigsberg c
PMCID: PMC251668  PMID: 4570768

Abstract

Escherichia coli strain K28, isolated after nitrosoguanidine mutagenesis, was found to be auxotrophic for serine. It was also temperature sensitive for growth as a result of producing an altered seryl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.11, l-serine: tRNA ligase [AMP]). The auxotrophy was caused by a mutation in the structural gene for phosphohydroxy-pyruvate transaminase (serC), which was distinct from, but closely linked to, the structural gene for seryl-tRNA synthetase (serS). We conclude that the relevant genes are in the order gal-serS-serC-aroA.

Full text

PDF
1091

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELBERG E. A., BURNS S. N. Genetic variation in the sex factor of Escherichia coli. J Bacteriol. 1960 Mar;79:321–330. doi: 10.1128/jb.79.3.321-330.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloemers H. P., Stephenson M. L., Zamecnik P. C. A sensitive micro assay for inorganic pyrophosphatase. Anal Biochem. 1970 Mar;34:66–70. doi: 10.1016/0003-2697(70)90086-2. [DOI] [PubMed] [Google Scholar]
  3. Clarke S. J., Low B., Konigsberg W. Isolation and characterization of a regulatory mutant of an aminoacyl-transfer ribonucleic acid synthetase in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1096–1103. doi: 10.1128/jb.113.3.1096-1103.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dempsey W. B. 3-Phosphoserine transaminase mutants of Escherichia coli B. J Bacteriol. 1969 Nov;100(2):1114–1115. doi: 10.1128/jb.100.2.1114-1115.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doolittle W. F., Yanofsky C. Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J Bacteriol. 1968 Apr;95(4):1283–1294. doi: 10.1128/jb.95.4.1283-1294.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Folk W. R., Berg P. Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. J Bacteriol. 1970 Apr;102(1):193–203. doi: 10.1128/jb.102.1.193-203.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol. 1971 Mar 24;230(12):122–125. doi: 10.1038/newbio230122a0. [DOI] [PubMed] [Google Scholar]
  8. Hoffman E. P., Wilhelm R. C., Konigsberg W., Katze J. R. A structural gene for seryl-tRNA synthetase in Escherichia coli K12. J Mol Biol. 1970 Feb 14;47(3):619–625. doi: 10.1016/0022-2836(70)90332-3. [DOI] [PubMed] [Google Scholar]
  9. Iaccarino M., Berg P. Isoleucine auxotrophy as a consequence of a mutationally altered isoleucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Feb;105(2):527–537. doi: 10.1128/jb.105.2.527-537.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kano Y., Matsushiro A., Shimura Y. Isolation of the novel regulatory mutants of the tryptophan biosynthetic system in Escherichia coli. Mol Gen Genet. 1968;102(1):15–26. doi: 10.1007/BF00341866. [DOI] [PubMed] [Google Scholar]
  11. Katze J. R., Konigsberg W. Purification and properties of seryl transfer ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1970 Mar 10;245(5):923–930. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
  17. Schlesinger S., Nester E. W. Mutants of Escherichia coli with an altered tyrosyl-transfer ribonucleic acid synthetase. J Bacteriol. 1969 Oct;100(1):167–175. doi: 10.1128/jb.100.1.167-175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES