Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1966 Oct;92(4):1076–1082. doi: 10.1128/jb.92.4.1076-1082.1966

Biochemical and Genetic Characterization of a Mutant of Escherichia coli with a Temperature-Sensitive Valyl Ribonucleic Acid Synthetase1

August Böck a,2, Lia Eidlic Faiman a,3, Frederick C Neidhardt a
PMCID: PMC276381  PMID: 5333025

Abstract

Böck, August (Purdue University, Lafayette, Ind.), Lia Eidlic Faiman, and Frederick C. Neidhardt. Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase. J. Bacteriol. 92:1076–1082. 1966.—To test our conclusion that Escherichia coli mutant I-9 possesses a valyl soluble ribonucleic acid (sRNA) synthetase that functions in vivo at 30 C but not at 37 C, measurements were made by use of the periodate method, of the level of charged valyl sRNA in this strain. A shift of temperature from 30 to 40 C resulted in a rapid discharging of valyl sRNA coordinate with the cessation of protein synthesis; at the same time, other species of sRNA, such as those for leucine, became fully charged. Identical results were obtained with a derivative of I-9 with relaxed ribonucleic acid (RNA) control. When P1 phage were grown on wild cells and then used at low multiplicities of infection to transduce temperature-resistant growth into I-9, complete cotransduction of normal valyl sRNA synthetase occurred. By means of the interrupted-mating technique, the structural gene for valyl sRNA synthetase was located on the E. coli chromosome map and found to be near thr, one-fifth of the length of the chromosome removed from the structural genes for the isoleucine-valine biosynthetic enzymes. Therefore, (i) the major valyl sRNA synthetase activity of I-9 appears to be temperature-sensitive in vivo, (ii) relaxed amino acid control over RNA synthesis does not appear to be a consequence of a normal charging of sRNA with a substitute molecule, and (iii) one structural gene for valyl sRNA synthetase is located on the E. coli chromosome not closely linked to the cistrons for the valine-biosynthetic enzymes.

Full text

PDF
1076

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALFOELDI L., STENT G. S., HOOGS M., HILL R. PHYSIOLOGICAL EFFECTS OF THE RNA CONTROL (RC) GENE IN E. COLI. Z Vererbungsl. 1963 Nov 21;94:285–302. doi: 10.1007/BF00894773. [DOI] [PubMed] [Google Scholar]
  2. EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EIDLIC L., NEIDHARDT F. C. ROLE OF VALYL-SRNA SYNTHETASE IN ENZYME REPRESSION. Proc Natl Acad Sci U S A. 1965 Mar;53:539–543. doi: 10.1073/pnas.53.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FANGMAN W. L., NEIDHARDT F. C. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1839–1843. [PubMed] [Google Scholar]
  5. FRAENKEL D. G., NEIDHARDT F. C. Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim Biophys Acta. 1961 Oct 14;53:96–110. doi: 10.1016/0006-3002(61)90797-1. [DOI] [PubMed] [Google Scholar]
  6. GORINI L., KAUFMAN H. Selecting bacterial mutants by the penicillin method. Science. 1960 Feb 26;131(3400):604–605. doi: 10.1126/science.131.3400.604. [DOI] [PubMed] [Google Scholar]
  7. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  8. Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
  9. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Lederberg J, Cavalli L L, Lederberg E M. Sex Compatibility in Escherichia Coli. Genetics. 1952 Nov;37(6):720–730. doi: 10.1093/genetics/37.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morris D. W., DeMoss J. A. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1624–1631. doi: 10.1128/jb.90.6.1624-1631.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Muench K. H., Berg P. Resolution of aminoacyl transfer ribonucleic acid by hydroxylapatite chromatography. Biochemistry. 1966 Mar;5(3):982–987. doi: 10.1021/bi00867a025. [DOI] [PubMed] [Google Scholar]
  13. STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yaniv M., Jacob F., Gros F. Mutations thermosensibles des systèmes activant la valine chez E. coli. Bull Soc Chim Biol (Paris) 1965;47(8):1609–1626. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES