Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 May;83(10):3136–3140. doi: 10.1073/pnas.83.10.3136

Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells.

R J Kaufman, P Murtha, D E Ingolia, C Y Yeung, R E Kellems
PMCID: PMC323467  PMID: 3486414

Abstract

We demonstrate that an adenosine deaminase (ADA) cDNA gene can function as a dominant selectable and amplifiable marker for gene transfer experiments in mammalian cells. Cells that incorporate the gene can be selected by growth in the presence of low concentrations of the ADA inhibitor 2'-deoxycoformycin with cytotoxic concentrations of adenosine or its analogue 9-beta-D-xylofuranosyl adenine. The DNA copy number of the transfected ADA minigene in the isolated transformants of Chinese hamster ovary cells can be amplified greater than 100-fold by growth in ADA selection media and increasing concentrations of 2'-deoxycoformycin. This selection scheme may allow for the introduction and subsequent amplification of heterologous DNA in a variety of mammalian cells.

Full text

PDF
3136

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal R. P., Spector T., Parks R. E., Jr Tight-binding inhibitors--IV. Inhibition of adenosine deaminases by various inhibitors. Biochem Pharmacol. 1977 Mar 1;26(5):359–367. doi: 10.1016/0006-2952(77)90192-7. [DOI] [PubMed] [Google Scholar]
  2. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978 Mar 10;253(5):1357–1370. [PubMed] [Google Scholar]
  3. Chan T. S., Creagan R. P., Reardon M. P. Adenosine kinase as a new selective marker in somatic cell genetics: isolation of adenosine kinase--deficient mouse cell lines and human--mouse hybrid cell lines containing adenosine kinase. Somatic Cell Genet. 1978 Jan;4(1):1–12. doi: 10.1007/BF01546489. [DOI] [PubMed] [Google Scholar]
  4. Christman J. K., Gerber M., Price P. M., Flordellis C., Edelman J., Acs G. Amplification of expression of hepatitis B surface antigen in 3T3 cells cotransfected with a dominant-acting gene and cloned viral DNA. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1815–1819. doi: 10.1073/pnas.79.6.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colbère-Garapin F., Horodniceanu F., Kourilsky P., Garapin A. C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981 Jul 25;150(1):1–14. doi: 10.1016/0022-2836(81)90321-1. [DOI] [PubMed] [Google Scholar]
  6. Dick J. E., Magli M. C., Huszar D., Phillips R. A., Bernstein A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell. 1985 Aug;42(1):71–79. doi: 10.1016/s0092-8674(85)80102-1. [DOI] [PubMed] [Google Scholar]
  7. Fernandez-Mejia C., Debatisse M., Buttin G. Adenosine-resistant Chinese hamster fibroblast variants with hyperactive adenosine-deaminase: an analysis of the protection against exogenous adenosine afforded by increased activity of the deamination pathway. J Cell Physiol. 1984 Sep;120(3):321–328. doi: 10.1002/jcp.1041200310. [DOI] [PubMed] [Google Scholar]
  8. Frieden C., Kurz L. C., Gilbert H. R. Adenosine deaminase and adenylate deaminase: comparative kinetic studies with transition state and ground state analogue inhibitors. Biochemistry. 1980 Nov 11;19(23):5303–5309. doi: 10.1021/bi00564a024. [DOI] [PubMed] [Google Scholar]
  9. Friedman R. L. Expression of human adenosine deaminase using a transmissable murine retrovirus vector system. Proc Natl Acad Sci U S A. 1985 Feb;82(3):703–707. doi: 10.1073/pnas.82.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris B. A., Plunkett W. Biochemical basis for the cytotoxicity of 9-beta-D-xylofuranosyladenine in Chinese hamster ovary cells. Cancer Res. 1981 Mar;41(3):1039–1044. [PubMed] [Google Scholar]
  11. Harris B. A., Plunkett W. Termination of RNA by nucleotides of 9-beta-D-xylofuranosyladenine. Biochem Biophys Res Commun. 1982 May 31;106(2):500–505. doi: 10.1016/0006-291x(82)91138-x. [DOI] [PubMed] [Google Scholar]
  12. Harris B. A., Saunders P. P., Plunkett W. Metabolism of 9-beta-D-xylofuranosyladenine by the Chinese hamster ovary cell. Mol Pharmacol. 1981 Jul;20(1):200–205. [PubMed] [Google Scholar]
  13. Haynes J., Weissmann C. Constitutive, long-term production of human interferons by hamster cells containing multiple copies of a cloned interferon gene. Nucleic Acids Res. 1983 Feb 11;11(3):687–706. doi: 10.1093/nar/11.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffee P. A., Hunt S. W., 3rd, Chiang J. Isolation of deoxycoformycin-resistant cells with increased levels of adenosine deaminase. Somatic Cell Genet. 1982 Jul;8(4):465–477. doi: 10.1007/BF01538708. [DOI] [PubMed] [Google Scholar]
  15. Hunt S. W., 3rd, Hoffee P. A. Amplification of adenosine deaminase gene sequences in deoxycoformycin-resistant rat hepatoma cells. J Biol Chem. 1983 Nov 10;258(21):13185–13192. [PubMed] [Google Scholar]
  16. Ingolia D. E., Yeung C. Y., Orengo I. F., Harrison M. L., Frayne E. G., Rudolph F. B., Kellems R. E. Purification and characterization of adenosine deaminase from a genetically enriched mouse cell line. J Biol Chem. 1985 Oct 25;260(24):13261–13267. [PubMed] [Google Scholar]
  17. Kaufman R. J., Sharp P. A. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. J Mol Biol. 1982 Aug 25;159(4):601–621. doi: 10.1016/0022-2836(82)90103-6. [DOI] [PubMed] [Google Scholar]
  18. Kaufman R. J., Sharp P. A. Construction of a modular dihydrofolate reductase cDNA gene: analysis of signals utilized for efficient expression. Mol Cell Biol. 1982 Nov;2(11):1304–1319. doi: 10.1128/mcb.2.11.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaufman R. J., Wasley L. C., Spiliotes A. J., Gossels S. D., Latt S. A., Larsen G. R., Kay R. M. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol Cell Biol. 1985 Jul;5(7):1750–1759. doi: 10.1128/mcb.5.7.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim S. K., Wold B. J. Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA. Cell. 1985 Aug;42(1):129–138. doi: 10.1016/s0092-8674(85)80108-2. [DOI] [PubMed] [Google Scholar]
  21. Lau Y. F., Lin C. C., Kan Y. W. Amplification and expression of human alpha-globin genes in Chinese hamster ovary cells. Mol Cell Biol. 1984 Aug;4(8):1469–1475. doi: 10.1128/mcb.4.8.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller A. D., Law M. F., Verma I. M. Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol. 1985 Mar;5(3):431–437. doi: 10.1128/mcb.5.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mulligan R. C., Berg P. Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2072–2076. doi: 10.1073/pnas.78.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murray M. J., Kaufman R. J., Latt S. A., Weinberg R. A. Construction and use of a dominant, selectable marker: a Harvey sarcoma virus-dihydrofolate reductase chimera. Mol Cell Biol. 1983 Jan;3(1):32–43. doi: 10.1128/mcb.3.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Orkin S. H., Goff S. C., Kelley W. N., Daddona P. E. Transient expression of human adenosine deaminase cDNAs: identification of a nonfunctional clone resulting from a single amino acid substitution. Mol Cell Biol. 1985 Apr;5(4):762–767. doi: 10.1128/mcb.5.4.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ringold G., Dieckmann B., Lee F. Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells. J Mol Appl Genet. 1981;1(3):165–175. [PubMed] [Google Scholar]
  27. Rio D. C., Clark S. G., Tjian R. A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. Science. 1985 Jan 4;227(4682):23–28. doi: 10.1126/science.2981116. [DOI] [PubMed] [Google Scholar]
  28. Scahill S. J., Devos R., Van der Heyden J., Fiers W. Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4654–4658. doi: 10.1073/pnas.80.15.4654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schimke R. T. Gene amplification in cultured animal cells. Cell. 1984 Jul;37(3):705–713. doi: 10.1016/0092-8674(84)90406-9. [DOI] [PubMed] [Google Scholar]
  30. Shipman C., Jr, Drach J. C. Absence of adenosine deaminase activity in a mammalian cell line transformed by Rous sarcoma virus. Science. 1978 Jun 9;200(4346):1163–1165. doi: 10.1126/science.206965. [DOI] [PubMed] [Google Scholar]
  31. Simonsen C. C., Levinson A. D. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci U S A. 1983 May;80(9):2495–2499. doi: 10.1073/pnas.80.9.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stark G. R., Wahl G. M. Gene amplification. Annu Rev Biochem. 1984;53:447–491. doi: 10.1146/annurev.bi.53.070184.002311. [DOI] [PubMed] [Google Scholar]
  33. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Valerio D., Duyvesteyn M. G., van der Eb A. J. Introduction of sequences encoding functional human adenosine deaminase into mouse cells using a retroviral shuttle system. Gene. 1985;34(2-3):163–168. doi: 10.1016/0378-1119(85)90124-6. [DOI] [PubMed] [Google Scholar]
  35. Wigler M., Perucho M., Kurtz D., Dana S., Pellicer A., Axel R., Silverstein S. Transformation of mammalian cells with an amplifiable dominant-acting gene. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3567–3570. doi: 10.1073/pnas.77.6.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]
  37. Wong G. G., Witek J. S., Temple P. A., Wilkens K. M., Leary A. C., Luxenberg D. P., Jones S. S., Brown E. L., Kay R. M., Orr E. C. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science. 1985 May 17;228(4701):810–815. doi: 10.1126/science.3923623. [DOI] [PubMed] [Google Scholar]
  38. Yeung C. Y., Frayne E. G., Al-Ubaidi M. R., Hook A. G., Ingolia D. E., Wright D. A., Kellems R. E. Amplification and molecular cloning of murine adenosine deaminase gene sequences. J Biol Chem. 1983 Dec 25;258(24):15179–15185. [PubMed] [Google Scholar]
  39. Yeung C. Y., Ingolia D. E., Bobonis C., Dunbar B. S., Riser M. E., Siciliano M. J., Kellems R. E. Selective overproduction of adenosine deaminase in cultured mouse cells. J Biol Chem. 1983 Jul 10;258(13):8338–8345. [PubMed] [Google Scholar]
  40. Yeung C. Y., Ingolia D. E., Roth D. B., Shoemaker C., Al-Ubaidi M. R., Yen J. Y., Ching C., Bobonis C., Kaufman R. J., Kellems R. E. Identification of functional murine adenosine deaminase cDNA clones by complementation in Escherichia coli. J Biol Chem. 1985 Aug 25;260(18):10299–10307. [PubMed] [Google Scholar]
  41. Yeung C. Y., Riser M. E., Kellems R. E., Siciliano M. J. Increased expression of one of two adenosine deaminase alleles in a human choriocarcinoma cell line following selection with adenine nucleosides. J Biol Chem. 1983 Jul 10;258(13):8330–8337. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES