Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jun;79(11):3551–3555. doi: 10.1073/pnas.79.11.3551

Origin of evolutionary novelty in proteins: how a high-cysteine chorion protein has evolved.

G C Rodakis, F C Kafatos
PMCID: PMC346459  PMID: 6954502

Abstract

The structure of unusual high-cysteine (Hc) proteins (ca. 30 mol %), which are characteristic of the chorion of the silkmoth Bombyx mori, has been determined by determining the sequence of a corresponding cDNA clone. The Hc protein sequence has evolved from a family of more ordinary chorion genes, in large part through fixation of mutations leading to enhanced cysteine content. Mutations of different types are differentially distributed in different parts of the sequence. In two conservative parts, those encoding the amino-terminal signal peptide and the highly structured central region of the protein, only base substitutions have been accepted. By contrast, in two alternating parts, which encode variable arms flanking the central region, deletions and duplications of tandemly repetitive sequences are prominent. Both base substitutions and expansions or deletions of tandemly repetitive elements are important in the evolution of this type of protein; functional constraints of the various protein domains dictate which class of mutations can be accepted.

Full text

PDF
3551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Iatrou K., Tsitilou S. G., Goldsmith M. R., Kafatos F. C. Molecular analysis of the GrB mutation in Bombyx mori through the use of chorion cDNA library. Cell. 1980 Jul;20(3):659–669. doi: 10.1016/0092-8674(80)90312-8. [DOI] [PubMed] [Google Scholar]
  2. Jones C. W., Kafatos F. C. Structure, organization and evolution of developmentally regulated chorion genes in a silkmoth. Cell. 1980 Dec;22(3):855–867. doi: 10.1016/0092-8674(80)90562-0. [DOI] [PubMed] [Google Scholar]
  3. Jones C. W., Rosenthal N., Rodakis G. C., Kafatos F. C. Evolution of two major chorion multigene families as inferred from cloned cDNA and protein sequences. Cell. 1979 Dec;18(4):1317–1332. doi: 10.1016/0092-8674(79)90242-3. [DOI] [PubMed] [Google Scholar]
  4. Kafatos F. C., Regier J. C., Mazur G. D., Nadel M. R., Blau H. M., Petri W. H., Wyman A. R., Gelinas R. E., Moore P. B., Paul M. The eggshell of insects: differentiation-specific proteins and the control of their synthesis and accumulation during development. Results Probl Cell Differ. 1977;8:45–145. doi: 10.1007/978-3-540-37332-2_2. [DOI] [PubMed] [Google Scholar]
  5. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  6. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nadel M. R., Kafatos F. C. Specific protein synthesis in cellular differentiation. IV. The chorion proteins of Bombyx mori and their program of synthesis. Dev Biol. 1980 Mar;75(1):26–40. doi: 10.1016/0012-1606(80)90141-4. [DOI] [PubMed] [Google Scholar]
  8. Nadel M. R., Thireos G., Kafatos F. C. Effect of the pleiotropic GrB mutation of Bombyx mori on chorion protein synthesis. Cell. 1980 Jul;20(3):649–658. doi: 10.1016/0092-8674(80)90311-6. [DOI] [PubMed] [Google Scholar]
  9. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  10. Pustell J., Kafatos F. C. A convenient and adaptable package of DNA sequence analysis programs for microcomputers. Nucleic Acids Res. 1982 Jan 11;10(1):51–59. doi: 10.1093/nar/10.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Regier J. C., Kafatos F. C., Goodfliesh R., Hood L. Silkmoth chorion proteins: sequence analysis of the products of a multigene family. Proc Natl Acad Sci U S A. 1978 Jan;75(1):390–394. doi: 10.1073/pnas.75.1.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tsitilou S. G., Regier J. C., Kafatos F. C. Selection and sequence analysis of a cDNA clone encoding a known chorion protein of the A family. Nucleic Acids Res. 1980 May 10;8(9):1987–1997. doi: 10.1093/nar/8.9.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zuckerkandl E. The appearance of new structures and functions in proteins during evolution. J Mol Evol. 1975 Dec 31;7(1):1–57. doi: 10.1007/BF01732178. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES