Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1980 Oct;36(1):133–142. doi: 10.1128/jvi.36.1.133-142.1980

Rabies mRNA translation in Xenopus laevis oocytes.

W H Wunner, P J Curtis, T J Wiktor
PMCID: PMC353624  PMID: 7441819

Abstract

Two rabies virus-specific mRNA species were identified by analysis of their encoded proteins after translation of the partially purified species in Xenopus laevis oocytes. One of these coded for the virion surface glycoprotein (G protein), and the other coded for the major structural protein of the virion nucleocapsid (N protein). The G-mRNA sedimented in a sucrose density gradient at about 18S, and the N-mRNA had a sedimentation coefficient of approximately 16S. Their respective translation products were identified in a radioimmunoassay with specific monoclonal antibody probes that recognized only G or N proteins. Immunoprecipitates formed between the radiolabeled viral antigens synthesized in programmed oocytes and their respective monoclonal antibodies were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The glycoprotein antigen translated from G-mRNA in oocytes migrated in the gel ahead of the virion G protein with a migration rate that was similar to that of nonglycosylated intracellular glycoproteins from virus-infected cells. The results suggested that the branched-chain carbohydrate of G protein was not required for recognition by the particular monoclonal antibody used. The nucleocapsid antigen translated from N-mRNA in oocytes migrated to the same position in the gel as marker virion N protein. Both the electrophoretic mobility of virus-specific antigens in sodium dodecyl sulfate-polyacrylamide gel and the antibody concentration dependence for immunoprecipitations were criteria for identifying the individual viral proteins encoded by the two rabies mRNA's.

Full text

PDF
133

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. V., Lane C. D. Translation of Xenopus liver messenger RNA in Xenopus oocytes: vitellogenin synthesis and conversion to yolk platelet proteins. Cell. 1976 Jun;8(2):283–297. doi: 10.1016/0092-8674(76)90012-x. [DOI] [PubMed] [Google Scholar]
  2. Both G. W., Moyer S. A., Banerjee A. K. Translation and identification of the mRNA species synthesized in vitro by the virion-associated RNA polymerase of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1975 Jan;72(1):274–278. doi: 10.1073/pnas.72.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown F., Bishop D. H., Crick J., Francki R. I., Holland J. J., Hull R., Johnson K., Martelli G., Murphy F. A., Obijeski J. F. Rhabdoviridae. Report of the Rhabdovirus Study Group, International Committee on Taxonomy of Viruses. Intervirology. 1979;12(1):1–7. doi: 10.1159/000149062. [DOI] [PubMed] [Google Scholar]
  4. Cullen S. E., Schwartz B. D. An improved method for isolation of H-2 and Ia alloantigens with immunoprecipitation induced by protein A-bearing staphylococci. J Immunol. 1976 Jul;117(1):136–142. [PubMed] [Google Scholar]
  5. Dietzschold B. Oligosaccharides of the glycoprotein of rabies virus. J Virol. 1977 Aug;23(2):286–293. doi: 10.1128/jvi.23.2.286-293.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ermine A., Flamand A. Rna syntheses in BHK21 cells infected by rabies virus. Ann Microbiol (Paris) 1977 May-Jun;128A(4):477–488. [PubMed] [Google Scholar]
  7. Flamand A., Delagneau J. F. Transcriptional mapping of rabies virus in vivo. J Virol. 1978 Nov;28(2):518–523. doi: 10.1128/jvi.28.2.518-523.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flamand A., Wiktor T. J., Koprowski H. Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins. I. The nucleocapsid protein. J Gen Virol. 1980 May;48(1):97–104. doi: 10.1099/0022-1317-48-1-97. [DOI] [PubMed] [Google Scholar]
  9. Flamand A., Wiktor T. J., Koprowski H. Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins. II. The glycoprotein. J Gen Virol. 1980 May;48(1):105–109. doi: 10.1099/0022-1317-48-1-105. [DOI] [PubMed] [Google Scholar]
  10. Gurdon J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol. 1968 Nov;20(3):401–414. [PubMed] [Google Scholar]
  11. Kawai A. Transcriptase activity associated with rabies virion. J Virol. 1977 Dec;24(3):826–835. doi: 10.1128/jvi.24.3.826-835.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Madore H. P., England J. M. Rabies virus protein synthesis in infected BHK-21 cells. J Virol. 1977 Apr;22(1):102–112. doi: 10.1128/jvi.22.1.102-112.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrison T., Stampfer M., Baltimore D., Lodish H. F. Translation of vesicular stomatitis messenger RNA by extracts from mammalian and plant cells. J Virol. 1974 Jan;13(1):62–72. doi: 10.1128/jvi.13.1.62-72.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mudd J. A., Summers D. F. Polysomal ribonucleic acid of vesicular stomatitis virus-infected HeLa cells. Virology. 1970 Dec;42(4):958–968. doi: 10.1016/0042-6822(70)90344-2. [DOI] [PubMed] [Google Scholar]
  16. Pennica D., Holloway B. P., Heyward J. T., Obijeski J. F. In vitro translation of rabies virus messenger RNAs. Virology. 1980 Jun;103(2):517–521. doi: 10.1016/0042-6822(80)90211-1. [DOI] [PubMed] [Google Scholar]
  17. Rose J. K., Knipe D. Nucleotide sequence complexities, molecular weights, and poly(A) content of the vesicular stomatitis virus mRNA species. J Virol. 1975 Apr;15(4):994–1003. doi: 10.1128/jvi.15.4.994-1003.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stampfer M., Baltimore D. Identification of the vesicular stomatitis virus large protein as a unique viral protein. J Virol. 1973 Apr;11(4):520–526. doi: 10.1128/jvi.11.4.520-526.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  20. Tyrrell D. L., Norrby E. Structural polypeptides of measles virus. J Gen Virol. 1978 May;39(2):219–229. doi: 10.1099/0022-1317-39-2-219. [DOI] [PubMed] [Google Scholar]
  21. Villarreal L. P., Holland J. J. RNA synthesis in BHK 21 cells persistently infected with vesicular stomatitis virus and rabies virus. J Gen Virol. 1976 Nov;33(2):213–224. doi: 10.1099/0022-1317-33-2-213. [DOI] [PubMed] [Google Scholar]
  22. Villarreal L. P., Holland J. J. Transcribing complexes in cells infected by vesicular stomatitis virus and rabies virus. J Virol. 1974 Sep;14(3):441–450. doi: 10.1128/jvi.14.3.441-450.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES