Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1971 May;7(5):690–691. doi: 10.1128/jvi.7.5.690-691.1971

Variation of 6-Methylaminopurine Content in Bacteriophage P22 Deoxyribonucleic Acid as a Function of Host Specificity

Stanley Hattman 1
PMCID: PMC356182  PMID: 4934088

Abstract

The 6-methylaminopurine (MAP) content of P22 deoxyribonucleic acid has been analyzed as a function of the host specificity it carries. A 40 to 50% reduction in MAP level occurs as a result of growth in host cells defective in the ability to confer LT specificity.

Full text

PDF
690

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARBER W. HOST SPECIFICITY OF DNA PRODUCED BY ESCHERICHIA COLI V . THE ROLE OF METHIONINE IN THE PRODUCTION OF HOST SPECIFICITY. J Mol Biol. 1965 Feb;11:247–256. doi: 10.1016/s0022-2836(65)80055-9. [DOI] [PubMed] [Google Scholar]
  2. Arber W., Kühnlein U. Mutationeller Verlust B-spezifischer Restriktion des Bakteriophagen fd. Pathol Microbiol (Basel) 1967;30(6):946–952. [PubMed] [Google Scholar]
  3. Arber W., Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. doi: 10.1146/annurev.bi.38.070169.002343. [DOI] [PubMed] [Google Scholar]
  4. Colson A. M., Colson C., Van Pel A. Host-controlled restriction mutants of Salmonella typhimurium. J Gen Microbiol. 1969 Sep;58(1):57–64. doi: 10.1099/00221287-58-1-57. [DOI] [PubMed] [Google Scholar]
  5. Colson C., Colson A. M. Host specificity and fertility in Salmonella typhimurium LT7. Biochem Biophys Res Commun. 1967 Dec 15;29(5):692–695. doi: 10.1016/0006-291x(67)90272-0. [DOI] [PubMed] [Google Scholar]
  6. DUNN D. B., SMITH J. D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627–636. doi: 10.1042/bj0680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GAREN A., ZINDER N. D. Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology. 1955 Nov;1(4):347–376. doi: 10.1016/0042-6822(55)90030-1. [DOI] [PubMed] [Google Scholar]
  8. Gough M., Lederberg S. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J Bacteriol. 1966 Apr;91(4):1460–1468. doi: 10.1128/jb.91.4.1460-1468.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hattman S. DNA methylation of T-even bacteriophages and of their nonglucosylated mutants: its role in P1-directed restriction. Virology. 1970 Oct;42(2):359–367. doi: 10.1016/0042-6822(70)90279-5. [DOI] [PubMed] [Google Scholar]
  10. Hirsch-Kauffmann M., Sauerbier W. Inhibition of modification and restriction for phages lambda and T-1 by co-infecting T3. Mol Gen Genet. 1968;102(2):89–94. doi: 10.1007/BF01789134. [DOI] [PubMed] [Google Scholar]
  11. Klein A. Mechanismen der wirtskontrollierten Modifikation des Phagen T1. Z Vererbungsl. 1965;96(4):346–363. [PubMed] [Google Scholar]
  12. Klein A. Wirtskontrollierte Modifikation. Z Vererbungsl. 1965;96(4):324–345. [PubMed] [Google Scholar]
  13. LEDINKO N. OCCURRENCE OF 5-METHYLDEOXYCYTIDYLATE IN THE DNA OF PHAGE LAMBDA. J Mol Biol. 1964 Sep;9:834–835. doi: 10.1016/s0022-2836(64)80191-1. [DOI] [PubMed] [Google Scholar]
  14. Lederberg S. 5-Methylcytosine in the host-modified DNA of Escherichia coli and phage lambda. J Mol Biol. 1966 May;17(1):293–297. doi: 10.1016/s0022-2836(66)80111-0. [DOI] [PubMed] [Google Scholar]
  15. Okada M., Watanabe T., Miyake T. On the nature of the recipient ability of Salmonella typhimurium for foreign deoxyribonucleic acids. J Gen Microbiol. 1968 Feb;50(2):241–252. doi: 10.1099/00221287-50-2-241. [DOI] [PubMed] [Google Scholar]
  16. Revel H. R., Luria S. E. DNA-glucosylation in T-even phage: genetic determination and role in phagehost interaction. Annu Rev Genet. 1970;4(0):177–192. doi: 10.1146/annurev.ge.04.120170.001141. [DOI] [PubMed] [Google Scholar]
  17. Thomas C. A., Jr The arrangement of information in DNA molecules. J Gen Physiol. 1966 Jul;49(6):143–169. doi: 10.1085/jgp.49.6.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. UETAKE H., TOYAMA S., HAGIWARA S. ON THE MECHANISM OF HOST-INDUCED MODIFICATION. MULTIPLICITY ACTIVATION AND THERMOLABILE FACTOR RESPONSIBLE FOR PHAGE GROWTH RESTRICTION. Virology. 1964 Feb;22:202–213. doi: 10.1016/0042-6822(64)90005-4. [DOI] [PubMed] [Google Scholar]
  19. VOLKIN E., ASTRACHAN L., COUNTRYMAN J. L. Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology. 1958 Oct;6(2):545–555. doi: 10.1016/0042-6822(58)90101-6. [DOI] [PubMed] [Google Scholar]
  20. Watanabe T., Takano T., Arai T., Nishida H., Sato S. Episome-mediated Transfer of Drug Resistance in Enterobacteriaceae X. Restriction and Modification of Phages by fi R Factors. J Bacteriol. 1966 Aug;92(2):477–486. doi: 10.1128/jb.92.2.477-486.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES