Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
- ALLENDE J. E., MONRO R., LIPMANN F. RESOLUTION OF THE E. COLI AMINO ACYL SRNA TRANSFER FACTOR INTO TWO COMPLEMENTARY FRACTIONS. Proc Natl Acad Sci U S A. 1964 Jun;51:1211–1216. doi: 10.1073/pnas.51.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALPERS D. H., TOMKINS G. M. THE ORDER OF INDUCTION AND DEINDUCTION OF THE ENZYMES OF THE LACTOSE OPERON IN E. COLI. Proc Natl Acad Sci U S A. 1965 Apr;53:797–802. doi: 10.1073/pnas.53.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ARLINGHAUS R., SHAEFER J., SCHWEET R. MECHANISM OF PEPTIDE BOND FORMATION IN POLYPEPTIDE SYNTHESIS. Proc Natl Acad Sci U S A. 1964 Jun;51:1291–1299. doi: 10.1073/pnas.51.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J. M., Capecchi M. R. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jan;55(1):147–155. doi: 10.1073/pnas.55.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J. M. On the release of the formyl group from nascent protein. J Mol Biol. 1968 May 14;33(3):571–589. doi: 10.1016/0022-2836(68)90307-0. [DOI] [PubMed] [Google Scholar]
- Algranati I. D., Gonzalez N. S., Bade E. G. Physiological role of 70S ribosomes in bacteria. Proc Natl Acad Sci U S A. 1969 Feb;62(2):574–580. doi: 10.1073/pnas.62.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allende C. C., Allende J. E., Gatica M., Celis J., Mora G., Matamala M. The aminoacyl ribonucleic acid synthetases. I. Properties of the threonyladenylate-enzyme complex. J Biol Chem. 1966 May 25;241(10):2245–2251. [PubMed] [Google Scholar]
- Allende J. E., Allende C. C., Gatica M., Matamala M. Isolation of threonyl adenylate-enzyme complex. Biochem Biophys Res Commun. 1964 Jul 1;16(4):342–346. doi: 10.1016/0006-291x(64)90037-3. [DOI] [PubMed] [Google Scholar]
- Allende J. E., Seeds N. W., Conway T. W., Weissbach H. Guanosine triphosphate interaction with an amino acid polymerization factor from E. coli. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1566–1573. doi: 10.1073/pnas.58.4.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allende J. E., Weissbach H. GTP interaction with a protein synthesis initiation factor preparation from Escherichia coli. Biochem Biophys Res Commun. 1967 Jul 10;28(1):82–88. doi: 10.1016/0006-291x(67)90410-x. [DOI] [PubMed] [Google Scholar]
- Anderson J. S., Bretscher M. S., Clark B. F., Marcker K. A. A GTP requirement for binding initiator tRNA to ribosomes. Nature. 1967 Jul 29;215(5100):490–492. doi: 10.1038/215490a0. [DOI] [PubMed] [Google Scholar]
- Anderson J. S., Dahlberg J. E., Bretscher M. S., Revel M., Clark B. F. GTP-stimulated binding of initiator-tRNA to ribosomes directed by f2 bacteriophage RNA. Nature. 1967 Dec 16;216(5120):1072–1076. doi: 10.1038/2161072a0. [DOI] [PubMed] [Google Scholar]
- Anfinsen C. B. The formation of the tertiary structure of proteins. Harvey Lect. 1967;61:95–116. [PubMed] [Google Scholar]
- Attardi G. The mechanism of protein synthesis. Annu Rev Microbiol. 1967;21:383–416. doi: 10.1146/annurev.mi.21.100167.002123. [DOI] [PubMed] [Google Scholar]
- Aubert M., Scott J. F., Reynier M., Monier R. Rearrangement of the conformation of Escherichia coli 5S RNA. Proc Natl Acad Sci U S A. 1968 Sep;61(1):292–299. doi: 10.1073/pnas.61.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayuso M. S., Heredia C. F. Guanosine triphosphate dependent enzymic binding of aminoacyl transfer ribonucleic acid to yeast ribosomes. Eur J Biochem. 1968 Dec;7(1):111–118. doi: 10.1111/j.1432-1033.1968.tb19581.x. [DOI] [PubMed] [Google Scholar]
- Bachmayer H., Kreil G. The formation of N-formyl-methionyl-puromycin by intact cells of four different bacteria and a blue-green alga. Biochim Biophys Acta. 1968 Nov 20;169(1):95–102. doi: 10.1016/0005-2787(68)90011-7. [DOI] [PubMed] [Google Scholar]
- Baldwin A. N., Berg P. Purification and properties of isoleucyl ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1966 Feb 25;241(4):831–838. [PubMed] [Google Scholar]
- Barnett W. E., Brown D. H., Epler J. L. Mitochondrial-specific aminoacyl-RNA synthetases. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1775–1781. doi: 10.1073/pnas.57.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett W. E., Brown D. H. Mitochondrial transfer ribonucleic acids. Proc Natl Acad Sci U S A. 1967 Feb;57(2):452–458. doi: 10.1073/pnas.57.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett W. E. Interspecies aminoacyl-sRNA formation: fractionation of Neurospora enzymes involved in anomalous aminoacylation. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1462–1467. doi: 10.1073/pnas.53.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berberich M. A., Venetianer P., Goldberger R. F. Alternative modes of derepression of the histidine operon observed in Salmonella typhimurium. J Biol Chem. 1966 Oct 10;241(19):4426–4433. [PubMed] [Google Scholar]
- Bernfield M. R., Nestor L. The enzymatic conversion of glutaminyl-tRNA to pyrrolidone carboxylate-tRNA. Biochem Biophys Res Commun. 1968 Dec 9;33(5):843–849. doi: 10.1016/0006-291x(68)90238-6. [DOI] [PubMed] [Google Scholar]
- Bishop J., Leahy J., Schweet R. FORMATION OF THE PEPTIDE CHAIN OF HEMOGLOBIN. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1030–1038. doi: 10.1073/pnas.46.8.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bluestein H. G., Allende C. C., Allende J. E., Cantoni G. L. Seryl transfer ribonucleic acid synthetase from bakers' yeast. 3. The seryladenylate-enzyme complex and its interaction with transfer ribonucleic acids. J Biol Chem. 1968 Sep 25;243(18):4693–4699. [PubMed] [Google Scholar]
- Boardman N. K., Francki R. I., Wildman S. G. Protein synthesis by cell-free extracts of tobacco leaves. 3. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes. J Mol Biol. 1966 Jun;17(2):470–487. doi: 10.1016/s0022-2836(66)80157-2. [DOI] [PubMed] [Google Scholar]
- Boedtker H., Kelling D. G. The ordered structure of 5S RNA. Biochem Biophys Res Commun. 1967 Dec 15;29(5):758–766. doi: 10.1016/0006-291x(67)90283-5. [DOI] [PubMed] [Google Scholar]
- Brawerman G., Eisenstadt J. M. A factor from Escherichia coli concerned with the stimulation of cell-free polypeptide synthesis by exogenous ribonucleic acid. II. Characteristics of the reaction promoted by the stimulation factor. Biochemistry. 1966 Sep;5(9):2784–2789. doi: 10.1021/bi00873a002. [DOI] [PubMed] [Google Scholar]
- Brenner S., Stretton A. O., Kaplan S. Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature. 1965 Jun 5;206(988):994–998. doi: 10.1038/206994a0. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Direct translation of a circular messenger DNA. Nature. 1968 Dec 14;220(5172):1088–1091. doi: 10.1038/2201088a0. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S., Marcker K. A. Polypeptidyl-sigma-ribonucleic acid and amino-acyl-sigma-ribonucleic acid binding sites on ribosomes. Nature. 1966 Jul 23;211(5047):380–384. doi: 10.1038/211380a0. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Polypeptide chain termination: an active process. J Mol Biol. 1968 May 28;34(1):131–136. doi: 10.1016/0022-2836(68)90239-8. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Translocation in protein synthesis: a hybrid structure model. Nature. 1968 May 18;218(5142):675–677. doi: 10.1038/218675a0. [DOI] [PubMed] [Google Scholar]
- Brimacombe R., Trupin J., Nirenberg M., Leder P., Bernfield M., Jaouni T. RNA codewords and protein synthesis, 8. Nucleotide sequences of synonym codons for arginine, valine, cysteine, and alanine. Proc Natl Acad Sci U S A. 1965 Sep;54(3):954–960. doi: 10.1073/pnas.54.3.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brot N., Ertel R., Weissbach H. Effect of a soluble transfer factor on the reaction of aminoacyl-tRNA with puromycin. Biochem Biophys Res Commun. 1968 May 23;31(4):563–570. doi: 10.1016/0006-291x(68)90515-9. [DOI] [PubMed] [Google Scholar]
- Brown J. C., Doty P. Protein factor requirement for binding of messenger RNA to ribosomes. Biochem Biophys Res Commun. 1968 Feb 15;30(3):284–291. doi: 10.1016/0006-291x(68)90448-8. [DOI] [PubMed] [Google Scholar]
- Brownlee G. G., Sanger F., Barrell B. G. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature. 1967 Aug 12;215(5102):735–736. doi: 10.1038/215735a0. [DOI] [PubMed] [Google Scholar]
- Bruton C. J., Hartley B. S. Sub-unit structure and specificity of methionyl-transfer-ribonucleic acid synthetase from Escherichia coli. Biochem J. 1968 Jun;108(2):281–288. doi: 10.1042/bj1080281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck C. A., Nass M. M. Differences between mitochondrial and cytoplasmic transfer RNA and aminoacyl transfer RNA synthetases from rat liver. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1045–1052. doi: 10.1073/pnas.60.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumsted R. M., Dahl J. L., Söll D., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. X. Further study of the glycyl transfer ribonucleic acids active in peptidoglycan synthesis in Staphylococcus aureus. J Biol Chem. 1968 Feb 25;243(4):779–782. [PubMed] [Google Scholar]
- Burchall J. J., Hitchings G. H. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol. 1965 Sep;1(2):126–136. [PubMed] [Google Scholar]
- Burrows W. J., Armstrong D. J., Skoog F., Hecht S. M., Boyle J. T., Leonard N. J., Occolowitz J. Cytokinin from soluble RNA of Escherichia coli: 6-(3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine. Science. 1968 Aug 16;161(3842):691–693. doi: 10.1126/science.161.3842.691. [DOI] [PubMed] [Google Scholar]
- Böck A., Neidhardt F. C. Location of the structural gene for glycyl ribonucleic acid synthetase by means of a strain of Escherichia coli possessing an unusual enzyme. Z Vererbungsl. 1966;98(3):187–192. doi: 10.1007/BF00888946. [DOI] [PubMed] [Google Scholar]
- CHAPEVILLE F., LIPMANN F., VON EHRENSTEIN G., WEISBLUM B., RAY W. J., Jr, BENZER S. On the role of soluble ribonucleic acid in coding for amino acids. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1086–1092. doi: 10.1073/pnas.48.6.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
- CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calendar R., Berg P. Purification and physical characterization of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry. 1966 May;5(5):1681–1690. doi: 10.1021/bi00869a033. [DOI] [PubMed] [Google Scholar]
- Calendar R., Berg P. The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry. 1966 May;5(5):1690–1695. doi: 10.1021/bi00869a034. [DOI] [PubMed] [Google Scholar]
- Cameron H. J., Julian G. R. The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli. Biochim Biophys Acta. 1968 Dec 17;169(2):373–380. doi: 10.1016/0005-2787(68)90045-2. [DOI] [PubMed] [Google Scholar]
- Cantor C. R. Possible conformations of 5-S ribosomal RNA. Nature. 1967 Nov 4;216(5114):513–514. doi: 10.1038/216513a0. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R. Initiation of E. coli proteins. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1517–1524. doi: 10.1073/pnas.55.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi M. R. Polarity in vitro. J Mol Biol. 1967 Nov 28;30(1):213–217. doi: 10.1016/0022-2836(67)90254-9. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R. Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1144–1151. doi: 10.1073/pnas.58.3.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbon J., Curry J. B. A change in the specificity of transfer RNA after partial deamination with nitrous acid. Proc Natl Acad Sci U S A. 1968 Feb;59(2):467–474. doi: 10.1073/pnas.59.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbon J., Curry J. B. Genetically and chemically derived missense suppressor transfer RNA's with altered enzymic aminoacylation rates. J Mol Biol. 1968 Dec 14;38(2):201–216. doi: 10.1016/0022-2836(68)90406-3. [DOI] [PubMed] [Google Scholar]
- Caskey C. T., Tompkins R., Scolnick E., Caryk T., Nirenberg M. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science. 1968 Oct 4;162(3849):135–138. doi: 10.1126/science.162.3849.135. [DOI] [PubMed] [Google Scholar]
- Cassio D. Etude de la méthionyl tRNA synthétase de Escherichia coli. 2. Inactivation sélective et réversible de la capacité de charger le tRNA. Eur J Biochem. 1968 Apr 3;4(2):222–224. doi: 10.1111/j.1432-1033.1968.tb00197.x. [DOI] [PubMed] [Google Scholar]
- Cassio D., Waller J. P. Etude la méthionyl-tRNA synthétase d'Escherichia coli. 3. Dissociation en sous-unités actives par action d'un facteur extrinsèque. Eur J Biochem. 1968 Jun;5(1):33–41. doi: 10.1111/j.1432-1033.1968.tb00333.x. [DOI] [PubMed] [Google Scholar]
- Chersi A., Dzionara M., Donner D., Wittman H. G. Ribosomal proteins. IV. Isolation, amino acid compositions, peptide maps and molecular weights of yeast ribosomal proteins. Mol Gen Genet. 1968;101(1):82–88. doi: 10.1007/BF00434814. [DOI] [PubMed] [Google Scholar]
- Clark-Walker G. D., Linnane A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):8–13. doi: 10.1016/0006-291x(66)90631-0. [DOI] [PubMed] [Google Scholar]
- Clark B. F., Marcker K. A. The role of N-formyl-methionyl-sRNA in protein biosynthesis. J Mol Biol. 1966 Jun;17(2):394–406. doi: 10.1016/s0022-2836(66)80150-x. [DOI] [PubMed] [Google Scholar]
- Clark F. C., Marcker K. A. Coding response of N-fromyl-methionyl-sRNA to UUG. Nature. 1965 Sep 4;207(5001):1038–1039. doi: 10.1038/2071038b0. [DOI] [PubMed] [Google Scholar]
- Cory S., Marcker K. A., Dube S. K., Clark B. F. Primary structure of a methionine transfer RNA from Escherichia coli. Nature. 1968 Dec 7;220(5171):1039–1040. doi: 10.1038/2201039a0. [DOI] [PubMed] [Google Scholar]
- Cramer F., Doepner H., Haar F V. D., Schlimme E., Seidel H. On the conformation of transfer RNA. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1384–1391. doi: 10.1073/pnas.61.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cundliffe E. Antibiotics and polyribosomes. Chlortetracycline and polyribosomes of Bacillus megaterium. Mol Pharmacol. 1967 Sep;3(5):401–411. [PubMed] [Google Scholar]
- Cuzin F., Kretchmer N., Greenberg R. E., Hurwitz R., Chapeville F. Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2079–2086. doi: 10.1073/pnas.58.5.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DINTZIS H. M. Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci U S A. 1961 Mar 15;47:247–261. doi: 10.1073/pnas.47.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darnell J. E., Jr Ribonucleic acids from animal cells. Bacteriol Rev. 1968 Sep;32(3):262–290. doi: 10.1128/br.32.3.262-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Wachter R., Fiers W. Sequences at the 5'-terminus of bacteriophage Q-beta-RNA. Nature. 1969 Jan 18;221(5177):233–235. doi: 10.1038/221233a0. [DOI] [PubMed] [Google Scholar]
- Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
- Doi R. H., Kaneko I., Goehler B. Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1548–1551. doi: 10.1073/pnas.56.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi R. H., Kaneko I., Igarashi R. T. Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J Biol Chem. 1968 Mar 10;243(5):945–951. [PubMed] [Google Scholar]
- Doolittle W. F., Yanofsky C. Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J Bacteriol. 1968 Apr;95(4):1283–1294. doi: 10.1128/jb.95.4.1283-1294.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dube S. K., Marcker K. A., Clark B. F., Cory S. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature. 1968 Apr 20;218(5138):232–233. doi: 10.1038/218232a0. [DOI] [PubMed] [Google Scholar]
- Dudock B. S., Katz G., Taylor E. K., Holley R. W. Primary structure of wheat germ phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1969 Mar;62(3):941–945. doi: 10.1073/pnas.62.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EISENSTADT J. M., BRAWERMAN G. THE PROTEIN-SYNTHESIZING SYSTEMS FROM THE CYTOPLASM AND THE CHLOROPLASTS OF EUGLENA GRACILIS. J Mol Biol. 1964 Dec;10:392–402. doi: 10.1016/s0022-2836(64)80060-7. [DOI] [PubMed] [Google Scholar]
- Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstadt J. M., Brawerman G. A factor from Escherichia coli concerned with the stimulation of cell-free polypeptide synthesis by exogenous ribonucleic acid. I. Evidence for the occurrence of a stimulation factor. Biochemistry. 1966 Sep;5(9):2777–2783. doi: 10.1021/bi00873a001. [DOI] [PubMed] [Google Scholar]
- Eisenstadt J. M., Brawerman G. The role of the native subribosomal particles of Escherichia coli in polypeptide chain initiation. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1560–1565. doi: 10.1073/pnas.58.4.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstadt J., Lengyel P. Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim-treated Escherichia coli. Science. 1966 Oct 28;154(3748):524–527. [PubMed] [Google Scholar]
- Engelhardt D. L., Webster R. E., Wilhelm R. C., Zinder N. In vitro studies on the mechanism of suppression of a nonsense mutation. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1791–1797. doi: 10.1073/pnas.54.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelhardt D. L., Webster R. E., Zinder N. D. Amber mutants and polarity in vitro. J Mol Biol. 1967 Oct 14;29(1):45–58. doi: 10.1016/0022-2836(67)90180-5. [DOI] [PubMed] [Google Scholar]
- Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
- Erbe R. W., Nau M. M., Leder P. Translation and translocation of defined RNA messengers. J Mol Biol. 1969 Feb 14;39(3):441–460. doi: 10.1016/0022-2836(69)90137-5. [DOI] [PubMed] [Google Scholar]
- Ertel R., Brot N., Redfield B., Allende J. E., Weissbach H. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):861–868. doi: 10.1073/pnas.59.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ertel R., Redfield B., Brot N., Weissbach H. Role of GTP in protein synthesis: interaction of GTP with soluble transfer factors from E. coli. Arch Biochem Biophys. 1968 Nov;128(2):331–338. doi: 10.1016/0003-9861(68)90039-8. [DOI] [PubMed] [Google Scholar]
- FANGMAN W. L., NEIDHARDT F. C. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1839–1843. [PubMed] [Google Scholar]
- Fellner P., Sanger F. Sequence analysis of specific areas of the 16S and 23S ribosomal RNAs. Nature. 1968 Jul 20;219(5151):236–238. doi: 10.1038/219236a0. [DOI] [PubMed] [Google Scholar]
- Fittler F., Hall R. H. Selective modification of yeast seryl-t-RNA and its effect on the acceptance and binding functions. Biochem Biophys Res Commun. 1966 Nov 22;25(4):441–446. doi: 10.1016/0006-291x(66)90225-7. [DOI] [PubMed] [Google Scholar]
- Fittler F., Kline L. K., Hall R. H. N6-(Delta 2-isopentenyl)adenosine: biosynthesis in vitro by an enzyme extract from yeast and rat liver. Biochem Biophys Res Commun. 1968 May 23;31(4):571–576. doi: 10.1016/0006-291x(68)90516-0. [DOI] [PubMed] [Google Scholar]
- Flessel C. P., Ralph P., Rich A. Polyribosomes of growing bacteria. Science. 1967 Nov 3;158(3801):658–660. doi: 10.1126/science.158.3801.658. [DOI] [PubMed] [Google Scholar]
- Fogel S., Sypherd P. S. Chemical basis for heterogeneity of ribosomal proteins. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1329–1336. doi: 10.1073/pnas.59.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forget B. G., Weissman S. M. Low molecular weight RNA components from KB cells. Nature. 1967 Mar 4;213(5079):878–882. doi: 10.1038/213878a0. [DOI] [PubMed] [Google Scholar]
- Forget B. G., Weissman S. M. Nucleotide sequence of KB cell 5S RNA. Science. 1967 Dec 29;158(3809):1695–1699. doi: 10.1126/science.158.3809.1695. [DOI] [PubMed] [Google Scholar]
- Fox J. L., Ganoza M. C. Chain termination in vitro. Studies on the specificity of amber and ochre triplets. Biochem Biophys Res Commun. 1968 Sep 30;32(6):1064–1070. doi: 10.1016/0006-291x(68)90138-1. [DOI] [PubMed] [Google Scholar]
- Fresco J. R., Blake R. D., Langridge R. Crystallization of transfer ribonucleic acids from unfractionated mixtures. Nature. 1968 Dec 28;220(5174):1285–1287. doi: 10.1038/2201285a0. [DOI] [PubMed] [Google Scholar]
- Fry K. T., Lamborg M. R. Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. J Mol Biol. 1967 Sep 28;28(3):423–433. doi: 10.1016/s0022-2836(67)80091-3. [DOI] [PubMed] [Google Scholar]
- GILBERT W. Polypeptide synthesis in Escherichia coli. II. The polypeptide chain and S-RNA. J Mol Biol. 1963 May;6:389–403. doi: 10.1016/s0022-2836(63)80051-0. [DOI] [PubMed] [Google Scholar]
- Ganoza M. C. Polypeptide chain termination in cell-free extracts of E. coli. Cold Spring Harb Symp Quant Biol. 1966;31:273–278. doi: 10.1101/sqb.1966.031.01.035. [DOI] [PubMed] [Google Scholar]
- Garen A. Sense and nonsense in the genetic code. Three exceptional triplets can serve as both chain-terminating signals and amino acid codons. Science. 1968 Apr 12;160(3824):149–159. doi: 10.1126/science.160.3824.149. [DOI] [PubMed] [Google Scholar]
- Gartland W. J., Sueoka N. Two interconvertible forms of tryptophanyl sRNA in E. coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):948–956. doi: 10.1073/pnas.55.4.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- George H., Meister A. Purification and properties of l-valyl-sRNA synthetase from Escherichia coli. Biochim Biophys Acta. 1967 Jan 11;132(1):165–174. doi: 10.1016/0005-2744(67)90202-1. [DOI] [PubMed] [Google Scholar]
- Geroch M. E., Richards E. G., Davies G. A. 5 S RNA. 1. Preparation and characterisation of highly purified 5 S RNA from Escherichia coli. Eur J Biochem. 1968 Nov;6(3):325–330. doi: 10.1111/j.1432-1033.1968.tb00452.x. [DOI] [PubMed] [Google Scholar]
- Ghosh H. P., Khorana H. G. Studies on polynucleotides, LXXXIV. On the role of ribosomal subunits in protein synthesis. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2455–2461. doi: 10.1073/pnas.58.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh H. P., Söll D., Khorana H. G. Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol. 1967 Apr 28;25(2):275–298. doi: 10.1016/0022-2836(67)90142-8. [DOI] [PubMed] [Google Scholar]
- Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
- Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
- Goldberg I. H., Mitsugi K. Sparsomycin inhibition of polypeptide synthesis promoted by synthetic and natural polynucleotides. Biochemistry. 1967 Feb;6(2):372–382. doi: 10.1021/bi00854a002. [DOI] [PubMed] [Google Scholar]
- Goodman H. M., Abelson J., Landy A., Brenner S., Smith J. D. Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature. 1968 Mar 16;217(5133):1019–1024. doi: 10.1038/2171019a0. [DOI] [PubMed] [Google Scholar]
- Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesman M. E. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967 Dec 10;242(23):5564–5571. [PubMed] [Google Scholar]
- Gould R. M., Thornton M. P., Liepkalns V., Lennarz W. J. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. II. Specificity of alanyl phosphatidylglycerol synthetase. J Biol Chem. 1968 Jun 10;243(11):3096–3104. [PubMed] [Google Scholar]
- Grollman A. P., Stewart M. L. Inhibition of the attachment of messenger ribonucleic acid to ribosomes. Proc Natl Acad Sci U S A. 1968 Oct;61(2):719–725. doi: 10.1073/pnas.61.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosjean H., Charlier J., Vanhumbeeck J. Magnesium requirement in the transacylation reaction catalysed by the isoleucyl-RNA synthetase of Bacillus stearothermophilus. Biochem Biophys Res Commun. 1968 Sep 30;32(6):935–939. doi: 10.1016/0006-291x(68)90117-4. [DOI] [PubMed] [Google Scholar]
- Gross S. R., McCoy M. T., Gilmore E. B. Evidence for the involvement of a nuclear gene in the productin of the mitochondrial leucyl-tRNA synthetase of Neurospora. Proc Natl Acad Sci U S A. 1968 Sep;61(1):253–260. doi: 10.1073/pnas.61.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunberg-Manago M., Clark B. F., Revel M., Rudland P. S., Dondon J. Stability of different ribosomal complexes with initiator transfer RNA and synthetic messenger RNA. J Mol Biol. 1969 Feb 28;40(1):33–44. doi: 10.1016/0022-2836(69)90294-0. [DOI] [PubMed] [Google Scholar]
- Gupta N. K., Khorana H. G. Missense suppression of the tryptophan synthetase A-protein mutant A78. Proc Natl Acad Sci U S A. 1966 Aug;56(2):772–779. doi: 10.1073/pnas.56.2.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guthrie C., Nomura M. Initiation of protein synthesis: a critical test of the 30S subunit model. Nature. 1968 Jul 20;219(5151):232–235. doi: 10.1038/219232a0. [DOI] [PubMed] [Google Scholar]
- HIEROWSKI M. INHIBITION OF PROTEIN SYNTHESIS BY CHLORTETRACYCLINE IN THE E. COLI IN VITRO SYSTEM. Proc Natl Acad Sci U S A. 1965 Mar;53:594–599. doi: 10.1073/pnas.53.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
- Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall R. H., Csonka L., David H., McLennan B. Cytokinins in the soluble RNA of plant tissues. Science. 1967 Apr 7;156(3771):69–71. doi: 10.1126/science.156.3771.69. [DOI] [PubMed] [Google Scholar]
- Hampel A., Labanauskas M., Connors P. G., Kirkegard L., RajBhandary U. L., Sigler P. B., Bock R. M. Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNA's. Science. 1968 Dec 20;162(3860):1384–1387. doi: 10.1126/science.162.3860.1384. [DOI] [PubMed] [Google Scholar]
- Harada F., Gross H. J., Kimura F., Chang S. H., Nishimura S., RajBhandary U. L. 2-Methylthio N6-(delta 2-isopentenyl) adenosine: a component of E. coli tyrosine transfer RNA. Biochem Biophys Res Commun. 1968 Oct 24;33(2):299–306. doi: 10.1016/0006-291x(68)90784-5. [DOI] [PubMed] [Google Scholar]
- Hartwell L. H., McLaughlin C. S. Mutants of yeast with temperature-sensitive isoleucyl-tRNA synthetases. Proc Natl Acad Sci U S A. 1968 Feb;59(2):422–428. doi: 10.1073/pnas.59.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helgeson J. P. The cytokinins. Synthetic and naturally occurring N6-substituted adenine derivatives profoundly affect plant growth. Science. 1968 Sep 6;161(3845):974–981. doi: 10.1126/science.161.3845.974. [DOI] [PubMed] [Google Scholar]
- Hershey J. W., Monro R. E. A competitive inhibitor of the GTP reaction in protein synthesis. J Mol Biol. 1966 Jun;18(1):68–76. doi: 10.1016/s0022-2836(66)80077-3. [DOI] [PubMed] [Google Scholar]
- Hershey J. W., Thach R. E. Role of guanosine 5'-triphosphate in the initiation of Peptide synthesis, I. Synthesis of formylmethionyl-puromycin. Proc Natl Acad Sci U S A. 1967 Mar;57(3):759–766. doi: 10.1073/pnas.57.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille M. B., Miller M. J., Iwasaki K., Wahba A. J. Translation of the genetic message. VI. The role of ribosomal subunits in binding of formylmethionyl-tRNA and its reaction with puromycin. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1652–1654. doi: 10.1073/pnas.58.4.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsh D. I. A study of the threonyl adenylate complex with threonyl transfer ribonucleic acid synthetase and its reaction with hydroxylamine. J Biol Chem. 1968 Nov 10;243(21):5731–5738. [PubMed] [Google Scholar]
- Hirsh D. I., Lipmann F. The divergence in reactivity of aminoacyl transfer ribonucleic acid synthetases of Escherichia coli with hydroxylamine. J Biol Chem. 1968 Nov 10;243(21):5724–5730. [PubMed] [Google Scholar]
- Hirshfield I. N., Horn P. C., Hopwood D. A., Maas W. K., DeDeken R. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. 3. Repression of enzymes of arginine biosynthesis in arginyl-tRNA synthetase mutants. J Mol Biol. 1968 Jul 14;35(1):83–93. doi: 10.1016/s0022-2836(68)80038-5. [DOI] [PubMed] [Google Scholar]
- Hollis V. W., Jr, Furano A. V. The fractionation of transfer factors in the presence of a proteolytic inhibitor. J Biol Chem. 1968 Sep 25;243(18):4926–4930. [PubMed] [Google Scholar]
- Hsu W. T., Foft J. W., Weiss S. B. Effect of bacteriophage infection on the sulfur-labeling of sRNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2028–2035. doi: 10.1073/pnas.58.5.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamoto F., Yamane T., Sueoka N. Existence of two phenylalanyl-sRNA synthetases in Neurospora crassa. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1456–1462. doi: 10.1073/pnas.53.6.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito J., Imamoto F. Sequential derepression and repression of the tryptophan operon in E. coli. Nature. 1968 Nov 2;220(5166):441–444. doi: 10.1038/220441a0. [DOI] [PubMed] [Google Scholar]
- KELLER E. B., ZAMECNIK P. C. The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J Biol Chem. 1956 Jul;221(1):45–59. [PubMed] [Google Scholar]
- Kaempfer R. O., Meselson M., Raskas H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J Mol Biol. 1968 Jan 28;31(2):277–289. doi: 10.1016/0022-2836(68)90444-0. [DOI] [PubMed] [Google Scholar]
- Kaempfer R. Ribosomal subunit exchange during protein synthesis. Proc Natl Acad Sci U S A. 1968 Sep;61(1):106–113. doi: 10.1073/pnas.61.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaltschmidt E., Dzionara M., Donner D., Wittmann H. G. Ribosomal proteins. I. Isolation, amino acid composition, molecular weights and peptide mapping of proteins from E. coli ribosomes. Mol Gen Genet. 1967;100(4):364–373. doi: 10.1007/BF00334063. [DOI] [PubMed] [Google Scholar]
- Kan J., Kano-Sueoka T., Sueoka N. Characterization of leucine transfer ribonucleic acid in Escherichia coli following infection with bacteriophage T2. J Biol Chem. 1968 Nov 10;243(21):5584–5590. [PubMed] [Google Scholar]
- Kano-Sueoka T., Nirenberg M., Sueoka N. Effect of bacteriophage infection upon the specificity of leucine transfer RNA for RNA codewords. J Mol Biol. 1968 Jul 14;35(1):1–12. doi: 10.1016/s0022-2836(68)80033-6. [DOI] [PubMed] [Google Scholar]
- Kano-Sueoka T., Sueoka N. Modification of leucyl-sRNA after bacteriophage infection. J Mol Biol. 1966 Sep;20(1):183–209. doi: 10.1016/0022-2836(66)90124-0. [DOI] [PubMed] [Google Scholar]
- Kaplan S., Anderson D. Selection of temperature-sensitive activating enzyme mutants in Escherichia coli. J Bacteriol. 1968 Mar;95(3):991–997. doi: 10.1128/jb.95.3.991-997.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaziro Y., Inoue N. Crystalline G factor from Escherichia coli. J Biochem. 1968 Sep;64(3):423–425. doi: 10.1093/oxfordjournals.jbchem.a128913. [DOI] [PubMed] [Google Scholar]
- Kepes A. Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim Biophys Acta. 1967 Mar 29;138(1):107–123. doi: 10.1016/0005-2787(67)90591-6. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Rich A. Single crystals of transfer RNA: an x-ray diffraction study. Science. 1968 Dec 20;162(3860):1381–1384. doi: 10.1126/science.162.3860.1381. [DOI] [PubMed] [Google Scholar]
- Kinoshita T., Kawano G., Tanaka N. Association of fusidic acid sensitivity with G factor in a protein-synthesizing system. Biochem Biophys Res Commun. 1968 Dec 9;33(5):769–773. doi: 10.1016/0006-291x(68)90226-x. [DOI] [PubMed] [Google Scholar]
- Kirtikar D. M., Kaji A. Stimulation of phage ribonucleic acid-dependent incorporation of amino acids by 5 S ribonucleic acid. J Biol Chem. 1968 Oct 25;243(20):5345–5353. [PubMed] [Google Scholar]
- Klein A., Mathews C. K., Eisenstadt J., Lengyel P. Further studies on the requirement for formyl residues in the synthesis of bacteriophage T4 proteins. Biochim Biophys Acta. 1968 Dec 17;169(2):543–545. doi: 10.1016/0005-2787(68)90064-6. [DOI] [PubMed] [Google Scholar]
- Klein A., Mathews C. K., Eisenstadt J., Lengyel P. On the requirement for formyl residues in the synthesis of bacteriophage T4 proteins. Biochim Biophys Acta. 1967 Dec 19;149(2):622–624. doi: 10.1016/0005-2787(67)90199-2. [DOI] [PubMed] [Google Scholar]
- Kohler R. E., Ron E. Z., Davis B. D. Significance of the free 70 s ribosomes in Escherichia coli extracts. J Mol Biol. 1968 Aug 28;36(1):71–82. doi: 10.1016/0022-2836(68)90220-9. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Dewey K. F., Hershey J. W., Thach R. E. Guanosine 5'-triphosphatase activity of initiation factor f2. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1066–1070. doi: 10.1073/pnas.61.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolakofsky D., Nakamoto T. The initiation of viral protein synthesis in e. Coli extracts. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1786–1793. doi: 10.1073/pnas.56.6.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolakofsky D., Ohta T., Thach R. E. Junction of the 50S ribosomal subunit with the 30S initiation complex. Nature. 1968 Oct 19;220(5164):244–247. doi: 10.1038/220244a0. [DOI] [PubMed] [Google Scholar]
- Kondo M., Eggerston G., Eisenstadt J., Lengyel P. Ribosome formation from subunits: dependence on formylmethionyl-transfer RNA in extracts from E. coli. Nature. 1968 Oct 26;220(5165):368–371. doi: 10.1038/220368a0. [DOI] [PubMed] [Google Scholar]
- Kroon A. M. Protein synthesis in mitochondria. 3. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions. Biochim Biophys Acta. 1965 Oct 11;108(2):275–284. doi: 10.1016/0005-2787(65)90012-2. [DOI] [PubMed] [Google Scholar]
- Kuriki Y., Kaji A. Factor- and guanosine 5'-triphosphate-dependent release of deacylated transfer RNA from 70S ribosomes. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1399–1405. doi: 10.1073/pnas.61.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurland C. G. The requirements for specific sRNA binding by ribosomes. J Mol Biol. 1966 Jun;18(1):90–108. doi: 10.1016/s0022-2836(66)80079-7. [DOI] [PubMed] [Google Scholar]
- Kwan C. N., Apirion D., Schlessinger D. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Biochemistry. 1968 Jan;7(1):427–433. doi: 10.1021/bi00841a055. [DOI] [PubMed] [Google Scholar]
- Kössel H., RajBhandary U. L. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA. J Mol Biol. 1968 Aug 14;35(3):539–560. doi: 10.1016/s0022-2836(68)80013-0. [DOI] [PubMed] [Google Scholar]
- Kössel H. Studies on polynucleotides. 83. Synthesis in vitro of the tripeptide valyl-seryl-lysine directed by poly r(G-U-A-A). Biochim Biophys Acta. 1968 Mar 18;157(1):91–96. doi: 10.1016/0005-2787(68)90267-0. [DOI] [PubMed] [Google Scholar]
- Küntzel H., Noll H. Mitochondrial and cytoplasmic polysomes from Neurospora crassa. Nature. 1967 Sep 23;215(5108):1340–1345. doi: 10.1038/2151340a0. [DOI] [PubMed] [Google Scholar]
- LEBOY P. S., COX E. C., FLAKS J. G. THE CHROMOSOMAL SITE SPECIFYING A RIBOSOMAL PROTEIN IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Dec;52:1367–1374. doi: 10.1073/pnas.52.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LENGYEL P., SPEYER J. F., OCHOA S. Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1936–1942. doi: 10.1073/pnas.47.12.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIPMANN F., HULSMANN W. C., HARTMANN G., BOMAN H. G., ACS G. Amino acid activation and protein synthesis. J Cell Comp Physiol. 1959 Dec;54:75–88. doi: 10.1002/jcp.1030540408. [DOI] [PubMed] [Google Scholar]
- LYTTLETON J. W. Isolation of ribosomes from spinach chloroplasts. Exp Cell Res. 1962 Mar;26:312–317. doi: 10.1016/0014-4827(62)90183-0. [DOI] [PubMed] [Google Scholar]
- Lagerkvist U., Rymo L. Structure and function of transfer ribonucleic acid. 3. Some properties of a complex between valyl transfer ribonucleic acid synthetase and transfer ribonucleic acid specific for valine. J Biol Chem. 1969 May 10;244(9):2476–2483. [PubMed] [Google Scholar]
- Lagerkvist U., Rymo L., Waldenström J. Structure and function of transfer ribonucleic acid. II. Enzyme-substrate complexes with valyl ribonucleic acid synthetase from yeast. J Biol Chem. 1966 Nov 25;241(22):5391–5400. [PubMed] [Google Scholar]
- Lagerkvist U., Waldenström J. Purification and some properties of valyl ribonucleic acid synthetase from yeast. J Biol Chem. 1967 Jul 10;242(13):3021–3025. [PubMed] [Google Scholar]
- Lake J. A., Beeman W. W. On the conformation of yeast transfer RNA. J Mol Biol. 1968 Jan 14;31(1):115–125. doi: 10.1016/0022-2836(68)90059-4. [DOI] [PubMed] [Google Scholar]
- Last J. A., Stanley W. M., Jr, Salas M., Hille M. B., Wahba A. J., Ochoa S. Translation of the genetic message, IV. UAA as a chain termination codon. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1062–1067. doi: 10.1073/pnas.57.4.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
- Leder P., Nau M. M. Initiation of protein synthesis. 3. Factor-GTP-codon-dependent binding of F-met-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Aug;58(2):774–781. doi: 10.1073/pnas.58.2.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. C., Ingram V. M. Erythrocyte transfer RNA: change during chick development. Science. 1967 Dec 8;158(3806):1330–1332. doi: 10.1126/science.158.3806.1330. [DOI] [PubMed] [Google Scholar]
- Lee L. W., Ravel J. M., Shive W. A general involvement of acceptor ribonucleic acid in the initial activation step of glutamic acid and glutamine. Arch Biochem Biophys. 1967 Sep;121(3):614–618. doi: 10.1016/0003-9861(67)90045-8. [DOI] [PubMed] [Google Scholar]
- Lee M. L., Muench K. H. Prolyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification and evidence for subunits. J Biol Chem. 1969 Jan 25;244(2):223–230. [PubMed] [Google Scholar]
- Leive L., Kollin V. Synthesis, utilization and degradation of lactose operon mRNA in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):247–259. doi: 10.1016/0022-2836(67)90330-0. [DOI] [PubMed] [Google Scholar]
- Lemoine F., Waller J. P., van Rapenbusch R. Studies on methionyl transfer RNA synthetase. 1. Purification and some properties of methionyl transfer RNA synthetase from Escherichia coli K-12. Eur J Biochem. 1968 Apr 3;4(2):213–221. doi: 10.1111/j.1432-1033.1968.tb00196.x. [DOI] [PubMed] [Google Scholar]
- Lennarz W. J., Nesbitt J. A., 3rd, Reiss J. The participation of sRNA in the enzymatic synthesis of O-L-lysyl phosphatidylgylcerol in Staphylococcus aureus. Proc Natl Acad Sci U S A. 1966 Apr;55(4):934–941. doi: 10.1073/pnas.55.4.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lietman P. S. Enzymatic acylation of phenylalanyl transfer ibonucleic acids from mitochondri and cytosol of rat liver. J Biol Chem. 1968 May 25;243(10):2837–2839. [PubMed] [Google Scholar]
- Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingston D. M., Leder P. Deformylation and protein biosynthesis. Biochemistry. 1969 Jan;8(1):435–443. doi: 10.1021/bi00829a059. [DOI] [PubMed] [Google Scholar]
- Lodish H. F. Bacteriophage f2 RNA: control of translation and gene order. Nature. 1968 Oct 26;220(5165):345–350. doi: 10.1038/220345a0. [DOI] [PubMed] [Google Scholar]
- Loehr J. S., Keller E. B. Dimers of alanine transfer RNA with acceptor activity. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1115–1122. doi: 10.1073/pnas.61.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loftfield R. B., Eigner E. A. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases. Biochim Biophys Acta. 1966 Dec 28;130(2):426–448. doi: 10.1016/0304-4165(66)90239-x. [DOI] [PubMed] [Google Scholar]
- Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas-Lenard J., Lipmann F. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1050–1057. doi: 10.1073/pnas.57.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARCKER K., SANGER F. N-FORMYL-METHIONYL-S-RNA. J Mol Biol. 1964 Jun;8:835–840. doi: 10.1016/s0022-2836(64)80164-9. [DOI] [PubMed] [Google Scholar]
- MCLAUGHLIN C. S., INGRAM V. M. AMINOACYL POSITION IN AMINOACYL SRNA. Science. 1964 Aug 28;145(3635):942–943. doi: 10.1126/science.145.3635.942. [DOI] [PubMed] [Google Scholar]
- MORRIS A. J., SCHWEET R. S. Release of soluble protein from reticulocyte ribosomes. Biochim Biophys Acta. 1961 Feb 18;47:415–416. doi: 10.1016/0006-3002(61)90310-9. [DOI] [PubMed] [Google Scholar]
- Maden B. E., Traut R. R., Monro R. E. Ribosome-catalysed peptidyl transfer: the polyphenylalanine system. J Mol Biol. 1968 Jul 28;35(2):333–345. doi: 10.1016/s0022-2836(68)80028-2. [DOI] [PubMed] [Google Scholar]
- Madison J. T., Everett G. A., Kung H. Nucleotide sequence of a yeast tyrosine transfer RNA. Science. 1966 Jul 29;153(3735):531–534. doi: 10.1126/science.153.3735.531. [DOI] [PubMed] [Google Scholar]
- Madison J. T. Primary structure of RNA. Annu Rev Biochem. 1968;37:131–148. doi: 10.1146/annurev.bi.37.070168.001023. [DOI] [PubMed] [Google Scholar]
- Mangiarotti G., Schlessinger D. Polyribosome metabolism in Escherichia coli. I. Extraction of polyribosomes and ribosomal subunits from fragile, growing Escherichia coli. J Mol Biol. 1966 Sep;20(1):123–143. doi: 10.1016/0022-2836(66)90122-7. [DOI] [PubMed] [Google Scholar]
- Marchis-Mouren G., Lipmann F. On the mechanism of acetylation of fetal and chicken hemoglobins. Proc Natl Acad Sci U S A. 1965 May;53(5):1147–1154. doi: 10.1073/pnas.53.5.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcker K. A., Clark B. F., Anderson J. S. N-formyl-methionyl-sRNA and its relation to protein biosynthesis. Cold Spring Harb Symp Quant Biol. 1966;31:279–285. doi: 10.1101/sqb.1966.031.01.036. [DOI] [PubMed] [Google Scholar]
- Marcker K. The formation of N-formyl-methionyl-sRNA. J Mol Biol. 1965 Nov;14(1):63–70. doi: 10.1016/s0022-2836(65)80230-3. [DOI] [PubMed] [Google Scholar]
- Margulies M. M. Effect of Chloramphenicol on Light-Dependent Synthesis of Proteins and Enzymes of Leaves and Chloroplasts of Phaseolus vulgaris. Plant Physiol. 1964 Jul;39(4):579–585. doi: 10.1104/pp.39.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin R. G., Whitfield H. J., Jr, Berkowitz D. B., Voll M. J. A molecular model of the phenomenon of polarity. Cold Spring Harb Symp Quant Biol. 1966;31:215–220. doi: 10.1101/sqb.1966.031.01.029. [DOI] [PubMed] [Google Scholar]
- Matthaei H., Sander G., Swan D., Kreuzer T., Caffier H., Parmeggiani A. Reaktionsschritte der Polypeptidsynthese an Ribosomen. Mechanismen der Proteinsynthese X. Naturwissenschaften. 1968 Jun;55(6):281–294. doi: 10.1007/BF00591706. [DOI] [PubMed] [Google Scholar]
- McCarthy B. J., Holland J. J. Denatured DNA as a direct template for in vitro protein synthesis. Proc Natl Acad Sci U S A. 1965 Sep;54(3):880–886. doi: 10.1073/pnas.54.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKeehan W., Sepulveda P., Lin S. Y., Hardesty B. Two distinct transfer enzymes from rabbit reticulocytes with ribosome dependent guanosine triphosphate phosphohydrolase activity. Biochem Biophys Res Commun. 1969 Mar 10;34(5):668–672. doi: 10.1016/0006-291x(69)90790-6. [DOI] [PubMed] [Google Scholar]
- Mehler A. H., Mitra S. K. The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J Biol Chem. 1967 Dec 10;242(23):5495–5499. [PubMed] [Google Scholar]
- Michaelis G., Starlinger P. Sequential appearance of the galactose enzymes in E. coli. Mol Gen Genet. 1967;100(2):210–215. doi: 10.1007/BF00333607. [DOI] [PubMed] [Google Scholar]
- Miovic M., Pizer L. I. Protein initiation following virulent bacteriophage infection. Proc Natl Acad Sci U S A. 1968 Sep;61(1):192–199. doi: 10.1073/pnas.61.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitra K., Mehler A. H. The role of transfer ribonucleic acid in the pyrophsphate exchange reaction of arginine-transfer ribonucleic acid synthetase. J Biol Chem. 1966 Nov 10;241(21):5161–5162. [PubMed] [Google Scholar]
- Mitra S. K., Mehler A. H. The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1967 Dec 10;242(23):5490–5494. [PubMed] [Google Scholar]
- Miura K. Specificity in the structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1967;6:39–82. doi: 10.1016/s0079-6603(08)60524-3. [DOI] [PubMed] [Google Scholar]
- Moav B., Harris T. N. Pyrrolid-2-one-5 carboxylic acid involvement in the biosynthesis of rabbit immunoglobulin. Biochem Biophys Res Commun. 1967 Dec 15;29(5):773–776. doi: 10.1016/0006-291x(67)90285-9. [DOI] [PubMed] [Google Scholar]
- Monro R. E. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J Mol Biol. 1967 May 28;26(1):147–151. doi: 10.1016/0022-2836(67)90271-9. [DOI] [PubMed] [Google Scholar]
- Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monro R. E., Marcker K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J Mol Biol. 1967 Apr 28;25(2):347–350. doi: 10.1016/0022-2836(67)90146-5. [DOI] [PubMed] [Google Scholar]
- Monro R. E., Vazquez D. Ribosome-catalysed peptidyl transfer: effects of some inhibitors of protein synthesis. J Mol Biol. 1967 Aug 28;28(1):161–165. doi: 10.1016/s0022-2836(67)80085-8. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Traut R. R., Noller H., Pearson P., Delius H. Ribosomal proteins of Escherichia coli. II. Proteins from the 30 s subunit. J Mol Biol. 1968 Feb 14;31(3):441–461. doi: 10.1016/0022-2836(68)90420-8. [DOI] [PubMed] [Google Scholar]
- Morris D. W., DeMoss J. A. Polysome transitions and the regulation of ribonucleic acid synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):262–268. doi: 10.1073/pnas.56.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse D. E., Baker R. F., Yanofsky C. Translation of the tryptophan messenger RNA of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1428–1435. doi: 10.1073/pnas.60.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muench K. H., Safille P. A. Transfer ribonucleic acids in Escherichia coli. Multiplicity and variation. Biochemistry. 1968 Aug;7(8):2799–2808. doi: 10.1021/bi00848a015. [DOI] [PubMed] [Google Scholar]
- Mukundan M. A., Hershey J. W., Dewey K. F., Thach R. E. Binding of formylmethionyl-tRNA to 30S ribosomal sub-units. Nature. 1968 Mar 16;217(5133):1013–1016. doi: 10.1038/2171013a0. [DOI] [PubMed] [Google Scholar]
- NATHANS D. INHIBITION OF PROTEIN SYNTHESIS BY PUROMYCIN. Fed Proc. 1964 Sep-Oct;23:984–989. [PubMed] [Google Scholar]
- NATHANS D., LIPMANN F. Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1961 Apr 15;47:497–504. doi: 10.1073/pnas.47.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
- NORRIS A. T., BERG P. MECHANISM OF AMINOACYL RNA SYNTHESIS: STUDIES WITH ISOLATED AMINOACYL ADENYLATE COMPLEXES OF ISOLEUCYL RNA SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Aug;52:330–337. doi: 10.1073/pnas.52.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamoto T., Kalokofsky D. A possible mechanism for initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):606–613. doi: 10.1073/pnas.55.3.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nass G. Regulation of histidine biosynthetic enzymes in a mutant of Escherichia coli with an altered histidyl-tRNA synthetase. Mol Gen Genet. 1967;100(2):216–224. doi: 10.1007/BF00333608. [DOI] [PubMed] [Google Scholar]
- Nass G., Stöffler G. Molecular weight distribution of the aminoacyl-tRNA-synthetases of Escherichia coli by gel filtration. Mol Gen Genet. 1967;100(4):378–382. doi: 10.1007/BF00334065. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson J. A., Ristow S. C., Holley R. W. Studies on the secondary structure of yeast alanine tRNA: reaction with N-bromosuccinimide and with nitrous acid. Biochim Biophys Acta. 1967 Dec 19;149(2):590–593. doi: 10.1016/0005-2787(67)90188-8. [DOI] [PubMed] [Google Scholar]
- Nesbitt J. A., 3rd, Lennarz W. J. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. I. Specificity of lysyl phosphatidylglycerol synthetase. J Biol Chem. 1968 Jun 10;243(11):3088–3095. [PubMed] [Google Scholar]
- Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
- Niyomporn B., Dahl J. L., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus. J Biol Chem. 1968 Feb 25;243(4):773–778. [PubMed] [Google Scholar]
- Noll H. Chain initiation and control of protein synthesis. Science. 1966 Mar 11;151(3715):1241–1245. doi: 10.1126/science.151.3715.1241. [DOI] [PubMed] [Google Scholar]
- Nomura M., Lowry C. V., Guthrie C. The initiation of protein synthesis: joining of the 50S ribosomal subunit to the initiation complex. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1487–1493. doi: 10.1073/pnas.58.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Lowry C. V. PHAGE f2 RNA-DIRECTED BINDING OF FORMYLMETHIONYL-TRNA TO RIBOSOMES AND THE ROLE OF 30S RIBOSOMAL SUBUNITS IN INITIATION OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1967 Sep;58(3):946–953. doi: 10.1073/pnas.58.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Traub P., Bechmann H. Hybrid 30S ribosomal particles reconstituted from components of different bacterial origins. Nature. 1968 Aug 24;219(5156):793–799. doi: 10.1038/219793b0. [DOI] [PubMed] [Google Scholar]
- Ochoa S. Translation of the genetic message. Naturwissenschaften. 1968 Nov;55(11):505–514. doi: 10.1007/BF00660121. [DOI] [PubMed] [Google Scholar]
- Ohta T., Sarkar S., Thach R. E. The role of guanosine 5'-triphosphate in the initiation of peptide synthesis. 3. Binding of formylmethionyl-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1638–1644. doi: 10.1073/pnas.58.4.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Schimada I., Imahori K. Conformational change of tyrosyl-RNA synthetase induced by its specific transfer RNA. J Mol Biol. 1967 Jun 28;26(3):519–524. doi: 10.1016/0022-2836(67)90319-1. [DOI] [PubMed] [Google Scholar]
- Okamoto T., Kawade Y. Electrophoretic separation of complexes of aminoacyl-tRNA synthetase and transfer RNA. Biochim Biophys Acta. 1967;145(3):613–620. doi: 10.1016/0005-2787(67)90120-7. [DOI] [PubMed] [Google Scholar]
- Ono Y., Skoultchi A., Klein A., Lengyel P. Peptide chain elongation: discrimination against the initiator transfer RNA by microbial amino-acid polymerization factors. Nature. 1968 Dec 28;220(5174):1304–1307. doi: 10.1038/2201304a0. [DOI] [PubMed] [Google Scholar]
- Ono Y., Skoultchi A., Waterson J., Lengyel P. Peptide chain elongation: GTP cleavage catalysed by factors binding aminoacyl-transfer RNA to the ribosome. Nature. 1969 May 17;222(5194):645–648. doi: 10.1038/222645a0. [DOI] [PubMed] [Google Scholar]
- Osawa S. Ribosome formation and structure. Annu Rev Biochem. 1968;37:109–130. doi: 10.1146/annurev.bi.37.070168.000545. [DOI] [PubMed] [Google Scholar]
- Papas T. S., Mehler A. H. Modification of the transfer function of proline transfer ribonucleic acid synthetase by temperature. J Biol Chem. 1968 Jul 10;243(13):3767–3769. [PubMed] [Google Scholar]
- Parenti-Rosina R., Eisenstadt A., Eisenstadt J. M. Isolation of protein initiation factors from 30S ribosomal subunits. Nature. 1969 Jan 25;221(5178):363–365. doi: 10.1038/221363a0. [DOI] [PubMed] [Google Scholar]
- Parmeggiani A. Crystalline transfer factors from Escherichia coli. Biochem Biophys Res Commun. 1968 Mar 27;30(6):613–619. doi: 10.1016/0006-291x(68)90556-1. [DOI] [PubMed] [Google Scholar]
- Parthier B. Chloramphenicol-Wirkung auf eine durch Licht stimulierte Proteinsynthesis in Blättern und in isolierten Chloroplasten. Z Naturforsch B. 1965 Dec;20(12):1191–1197. [PubMed] [Google Scholar]
- Pene J. J., Knight E., Jr, Darnell J. E., Jr Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J Mol Biol. 1968 May 14;33(3):609–623. doi: 10.1016/0022-2836(68)90309-4. [DOI] [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J Biol Chem. 1968 May 25;243(10):2810–2820. [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of trensfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. Proc Natl Acad Sci U S A. 1968 Oct;61(2):726–733. doi: 10.1073/pnas.61.2.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson P. J. Amino acid selection in protein biosynthesis. Biol Rev Camb Philos Soc. 1967 Nov;42(4):552–613. doi: 10.1111/j.1469-185x.1967.tb01530.x. [DOI] [PubMed] [Google Scholar]
- Petit J. F., Strominger J. L., Söll D. Biosynthesis of the peptidoglycan of bacterial cell walls. VII. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J Biol Chem. 1968 Feb 25;243(4):757–767. [PubMed] [Google Scholar]
- Phillips L. A., Hotham-Iglewski B., Franklin R. M. Polyribosomes of Escherichia coli. I. Effects of monovalent cations on the distribution of polysomes, ribosomes and ribosomal subunits. J Mol Biol. 1969 Mar 14;40(2):279–288. doi: 10.1016/0022-2836(69)90475-6. [DOI] [PubMed] [Google Scholar]
- Press E. M., Piggot P. J., Porter R. R. The N- and c-terminal amino acid sequences of the heavy chain from a pathological human immunoglobulin IgG. Biochem J. 1966 May;99(2):356–366. doi: 10.1042/bj0990356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAVEL J. M., WANG S. F., HEINEMEYER C., SHIVE W. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID. J Biol Chem. 1965 Jan;240:432–438. [PubMed] [Google Scholar]
- RENDI R. The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver. Exp Cell Res. 1959 Aug;18:187–189. doi: 10.1016/0014-4827(59)90307-6. [DOI] [PubMed] [Google Scholar]
- ROSSET R., MONIER R. [Apropos of the presence of weak molecular weight RNA in the ribosomes of Escherichia Coli]. Biochim Biophys Acta. 1963 Apr 30;68:653–656. doi: 10.1016/0006-3002(63)90199-9. [DOI] [PubMed] [Google Scholar]
- RajBhandary U. L., Ghosh H. P. Studies on polynucleotides. XCI. Yeast methionine transfer ribonucleic acid: purification, properties, and terminal nucleotide sequences. J Biol Chem. 1969 Mar 10;244(5):1104–1113. [PubMed] [Google Scholar]
- Rajbhandary U. L., Chang S. H., Stuart A., Faulkner R. D., Hoskinson R. M., Khorana H. G. Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):751–758. doi: 10.1073/pnas.57.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravel J. M. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1811–1816. doi: 10.1073/pnas.57.6.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. L., Shive W. Evidence for a guanine nucleotide-aminoacyl-RNA complex as an intermediate in the enzymatic transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1967 Oct 11;29(1):68–73. doi: 10.1016/0006-291x(67)90542-6. [DOI] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. L., Shive W. The composition of the active intermediate in the transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1968 Jul 11;32(1):9–14. doi: 10.1016/0006-291x(68)90418-x. [DOI] [PubMed] [Google Scholar]
- Revel M., Gros F. A factor from E. coli required for the translation of natural messenger RNA. Biochem Biophys Res Commun. 1966 Oct 5;25(1):124–132. doi: 10.1016/0006-291x(66)90649-8. [DOI] [PubMed] [Google Scholar]
- Revel M., Lelong J. C., Brawerman G., Gros F. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli. Nature. 1968 Sep 7;219(5158):1016–1021. doi: 10.1038/2191016a0. [DOI] [PubMed] [Google Scholar]
- Richter D., Klink F. Aminoacyl-tRNA-dependent interaction of a transfer enzyme from yeast with a complex formed by two other transfer factors with guanosine triphosphate. FEBS Lett. 1968 Nov;2(1):49–52. doi: 10.1016/0014-5793(68)80098-5. [DOI] [PubMed] [Google Scholar]
- Roberts W. S., Petit J. F., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes. J Biol Chem. 1968 Feb 25;243(4):768–772. [PubMed] [Google Scholar]
- Roberts W. S., Strominger J. L., Söll D. Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus. J Biol Chem. 1968 Feb 25;243(4):749–756. [PubMed] [Google Scholar]
- Robins M. J., Hall R. H., Thedford R. N-6-(delta-3-isopentenyl) adenosine. A component of the transfer ribonucleic acid of yeast and of mammalian tissue, methods of isolation, and characterization. Biochemistry. 1967 Jun;6(6):1837–1848. doi: 10.1021/bi00858a035. [DOI] [PubMed] [Google Scholar]
- Ron E. Z., Kohler R. E., Davis B. D. Increased stability of polysomes in an Escherichia coli mutant with relaxed control of RNA synthesis. Proc Natl Acad Sci U S A. 1966 Aug;56(2):471–475. doi: 10.1073/pnas.56.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ron E. Z., Kohler R. E., Davis B. D. Magnesium ion dependence of free and polysomal ribosomes from Escherichia coli. J Mol Biol. 1968 Aug 28;36(1):83–89. doi: 10.1016/0022-2836(68)90221-0. [DOI] [PubMed] [Google Scholar]
- Roth J. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium II. Histidine regulatory mutants having altered histidyl-tRNA synthetase. J Mol Biol. 1966 Dec 28;22(2):325–333. doi: 10.1016/0022-2836(66)90135-5. [DOI] [PubMed] [Google Scholar]
- Rouget P., Chapeville F. Reactions sequence of leucine activation catalysed by leucyl-RNA synthetase. 2. Formation of complexes between the enzyme and substrates. Eur J Biochem. 1968 Apr;4(3):310–314. doi: 10.1111/j.1432-1033.1968.tb00210.x. [DOI] [PubMed] [Google Scholar]
- Rychlík I. Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes. Biochim Biophys Acta. 1966 Feb 21;114(2):425–427. doi: 10.1016/0005-2787(66)90327-3. [DOI] [PubMed] [Google Scholar]
- SCHAECHTER M., PREVIC E. P., GILLESPIE M. E. MESSENGER RNA AND POLYRIBOSOMES IN BACILLUS MEGATERIUM. J Mol Biol. 1965 May;12:119–129. doi: 10.1016/s0022-2836(65)80286-8. [DOI] [PubMed] [Google Scholar]
- SONNENBICHLER J., FELDMANN H., ZACHAU H. G. IDENTIFIZIERUNG DER AMINOACYL-S-RNA ALS 3'-ESTER DES TERMINALEN ADENOSINS. Hoppe Seylers Z Physiol Chem. 1963;334:283–286. doi: 10.1515/bchm2.1963.334.1.283. [DOI] [PubMed] [Google Scholar]
- SUEOKA N., KANO-SUEOKA T. A SPECIFIC MODIFICATION OF LEUCYL-SRNA OF ESCHERICHIA COLI AFTER PHAGE T2 INFECTION. Proc Natl Acad Sci U S A. 1964 Dec;52:1535–1540. doi: 10.1073/pnas.52.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salas M., Hille M. B., Last J. A., Wahba A. J., Ochoa S. Translation of the genetic message, ii. Effect of initiation factors on the binding of formyl-methionyl-trna to ribosomes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):387–394. doi: 10.1073/pnas.57.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salas M., Miller M. J., Wahba A. J., Ochoa S. Translation of the genetic message. V. Effect of Mg++ and formylation of methionine in protein synthesis. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1865–1869. doi: 10.1073/pnas.57.6.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sambrook J. F., Fan D. P., Brenner S. A strong suppressor specific for UGA. Nature. 1967 Apr 29;214(5087):452–453. doi: 10.1038/214452a0. [DOI] [PubMed] [Google Scholar]
- Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
- Sarabhai A., Brenner S. A mutant which reinitiates the polypeptide chain after chain termination. J Mol Biol. 1967 Jul 14;27(1):145–162. doi: 10.1016/0022-2836(67)90357-9. [DOI] [PubMed] [Google Scholar]
- Sarkar S., Thach R. E. Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1479–1486. doi: 10.1073/pnas.60.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulman L. H., Chambers R. W. Transfer RNA, II. A structural basis for alanine acceptor activity. Proc Natl Acad Sci U S A. 1968 Sep;61(1):308–315. doi: 10.1073/pnas.61.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. H., Meyer R., Eisenstadt J. M., Brawerman G. Involvement of N-formylmethionine in initiation of protein synthesis in cell-free extracts of Euglena gracilis. J Mol Biol. 1967 May 14;25(3):571–574. doi: 10.1016/0022-2836(67)90210-0. [DOI] [PubMed] [Google Scholar]
- Scolnick E., Tompkins R., Caskey T., Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968 Oct;61(2):768–774. doi: 10.1073/pnas.61.2.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeds N. W., Conway T. W. Reversal by GTP of soluble RNA inhibition of polyphenylalanine synthesis. Biochem Biophys Res Commun. 1966 Apr 19;23(2):111–116. doi: 10.1016/0006-291x(66)90513-4. [DOI] [PubMed] [Google Scholar]
- Seifert W., Nass G., Zillig W. Electrophoretic separation of tRNA-bound leucyl-tRNA synthetase from Escherichia coli extracts. J Mol Biol. 1968 Apr 28;33(2):507–511. doi: 10.1016/0022-2836(68)90208-8. [DOI] [PubMed] [Google Scholar]
- Shih A. Y., Eisenstadt J., Lengyel P. On the relation between ribonucleic acid synthesis and peptide chain initiation in E. coli. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1599–1605. doi: 10.1073/pnas.56.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silbert D. F., Fink G. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol. 1966 Dec 28;22(2):335–347. doi: 10.1016/0022-2836(66)90136-7. [DOI] [PubMed] [Google Scholar]
- Skogerson L., Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968 May;125(2):497–505. doi: 10.1016/0003-9861(68)90607-3. [DOI] [PubMed] [Google Scholar]
- Skoog F., Armstrong D. J., Cherayil J. D., Hampel A. E., Bock R. M. Cytokinin activity: localization in transfer RNA preparations. Science. 1966 Dec 9;154(3754):1354–1356. doi: 10.1126/science.154.3754.1354. [DOI] [PubMed] [Google Scholar]
- Skoultchi A., Ono Y., Moon H. M., Lengyel P. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):675–682. doi: 10.1073/pnas.60.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. E., Marcker K. A. N-formylmethionyl transfer RNA in mitochondria from yeast and rat liver. J Mol Biol. 1968 Dec 14;38(2):241–243. doi: 10.1016/0022-2836(68)90409-9. [DOI] [PubMed] [Google Scholar]
- Smith M. A., Salas M., Stanley W. M., Jr, Wahba A. J., Ochoa S. Direction of reading of the genetic message. II. Proc Natl Acad Sci U S A. 1966 Jan;55(1):141–147. doi: 10.1073/pnas.55.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spirin A. S. How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. Curr Mod Biol. 1968 Jul-Aug;2(3):115–127. doi: 10.1016/0303-2647(68)90017-8. [DOI] [PubMed] [Google Scholar]
- Staehelin M., Rogg H., Baguley B. C., Ginsberg T., Wehrli W. Structure of a mammalian serine tRNA. Nature. 1968 Sep 28;219(5161):1363–1365. doi: 10.1038/2191363a0. [DOI] [PubMed] [Google Scholar]
- Stanley W. M., Jr, Salas M., Wahba A. J., Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):290–295. doi: 10.1073/pnas.56.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern R., Mehler A. H. Lysyl-sRNA synthetase from Escherichia coli. Biochem Z. 1965 Aug 19;342(4):400–409. [PubMed] [Google Scholar]
- Stulberg M. P. The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B. J Biol Chem. 1967 Mar 10;242(5):1060–1064. [PubMed] [Google Scholar]
- Stutz E., Noll H. Characterization of cytoplasmic and chloroplast polysomes in plants: evidence for three classes of ribosomal RNA in nature. Proc Natl Acad Sci U S A. 1967 Mar;57(3):774–781. doi: 10.1073/pnas.57.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stöffler G., Rudloff V., Wittman H. G. Ribosomal proteins. 3. Preparative separation of Escherichia coli and yeast ribosomal proteins by means of gel filtration. Mol Gen Genet. 1968;101(1):70–81. doi: 10.1007/BF00434813. [DOI] [PubMed] [Google Scholar]
- Subak-Sharpe H. An animal virus with DNA of high guanine + cytosine content which codes for S-RNA. J Mol Biol. 1965 Jul;12(3):924–928. doi: 10.1016/s0022-2836(65)80339-4. [DOI] [PubMed] [Google Scholar]
- Subak-Sharpe H., Shepherd W. M., Hay J. Studies on sRNA coded by herpes virus. Cold Spring Harb Symp Quant Biol. 1966;31:583–594. doi: 10.1101/sqb.1966.031.01.076. [DOI] [PubMed] [Google Scholar]
- Subramanian A. R., Ron E. Z., Davis B. D. A factor required for ribosome dissociation in Escherichia coli. Proc Natl Acad Sci U S A. 1968 Oct;61(2):761–767. doi: 10.1073/pnas.61.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundararajan T. A., Thach R. E. Role of the formylmethionine codon AUG in phasing translation of synthetic messenger RNA. J Mol Biol. 1966 Aug;19(1):74–90. doi: 10.1016/s0022-2836(66)80051-7. [DOI] [PubMed] [Google Scholar]
- Sundharadas G., Katze J. R., Söll D., Konigsberg W., Lengyel P. On the recognition of serine transfer RNA's specific for unrelated codons by the same seryl-transfer RNA synthetase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):693–700. doi: 10.1073/pnas.61.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suyama Y. The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry. 1967 Sep;6(9):2829–2839. doi: 10.1021/bi00861a025. [DOI] [PubMed] [Google Scholar]
- Szentirmai A., Szentirmai M., Umbarger H. E. Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J Bacteriol. 1968 May;95(5):1672–1679. doi: 10.1128/jb.95.5.1672-1679.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Söll D., Cherayil J. D., Bock R. M. Studies on polynucleotides. LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. J Mol Biol. 1967 Oct 14;29(1):97–112. doi: 10.1016/0022-2836(67)90183-0. [DOI] [PubMed] [Google Scholar]
- Söll D., Jones D. S., Ohtsuka E., Faulkner R. D., Lohrmann R., Hayatsu H., Khorana H. G. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J Mol Biol. 1966 Aug;19(2):556–573. doi: 10.1016/s0022-2836(66)80023-2. [DOI] [PubMed] [Google Scholar]
- Söll D., Ohtsuka E., Jones D. S., Lohrmann R., Hayatsu H., Nishimura S., Khorana H. G. Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1378–1385. doi: 10.1073/pnas.54.5.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Söll D. Studies on polynucleotides. LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression. J Mol Biol. 1968 May 28;34(1):175–187. doi: 10.1016/0022-2836(68)90243-x. [DOI] [PubMed] [Google Scholar]
- TAKANAMI M. Transfer of amino acids from soluble ribonucleic aci to ribosome. III. Further studies on the interaction between ribosome and soluble ribonucleic aci. Biochim Biophys Acta. 1962 Sep 17;61:432–444. doi: 10.1016/0926-6550(62)90146-9. [DOI] [PubMed] [Google Scholar]
- TAYLOR M. M., STORCK R. UNIQUENESS OF BACTERIAL RIBOSOMES. Proc Natl Acad Sci U S A. 1964 Oct;52:958–965. doi: 10.1073/pnas.52.4.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAUT R. R., MONRO R. E. THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. J Mol Biol. 1964 Oct;10:63–72. doi: 10.1016/s0022-2836(64)80028-0. [DOI] [PubMed] [Google Scholar]
- Takanami M., Yan Y., Jukes T. H. Studies on the site of ribosomal binding of f2 bacteriophage RNA. J Mol Biol. 1965 Jul;12(3):761–773. doi: 10.1016/s0022-2836(65)80325-4. [DOI] [PubMed] [Google Scholar]
- Takanami M., Yan Y. The release of polypeptide chains from ribosomes in cell-free amino acid-incorporating systems by specific combinations of bases in synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1450–1458. doi: 10.1073/pnas.54.5.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda M., Webster R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1487–1494. doi: 10.1073/pnas.60.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takemura S., Mizutani T., Miyazaki M. The primary structure of valine-I transfer ribonucleic acid from Torulopsis utilis. J Biochem. 1968 Feb;63(2):277–278. doi: 10.1093/oxfordjournals.jbchem.a128772. [DOI] [PubMed] [Google Scholar]
- Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor M. W., Granger G. A., Buck C. A., Holland J. J. Similarities and differences among specific tRNA's in mammalian tissues. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1712–1719. doi: 10.1073/pnas.57.6.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thach R. E., Dewey K. F., Brown J. C., Doty P. Formylmethionine codon AUG as an initiator of polypeptide synthesis. Science. 1966 Jul 22;153(3734):416–418. doi: 10.1126/science.153.3734.416. [DOI] [PubMed] [Google Scholar]
- Thiebe R., Zachau H. G. A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem. 1968 Sep 24;5(4):546–555. doi: 10.1111/j.1432-1033.1968.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Tocchini-Valentini G. P., Mattoccia E. A mutant of E. coli with an altered supernatant factor. Proc Natl Acad Sci U S A. 1968 Sep;61(1):146–151. doi: 10.1073/pnas.61.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):777–784. doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traut R. R., Moore P. B., Delius H., Noller H., Tissières A. Ribosomal proteins of Escherichia coli. I. Demonstration of different primary structures. Proc Natl Acad Sci U S A. 1967 May;57(5):1294–1301. doi: 10.1073/pnas.57.5.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trávnícek M. RNA with amino acid-acceptor activity isolated from an oncogenic virus. Biochim Biophys Acta. 1968 Oct 29;166(3):757–759. [PubMed] [Google Scholar]
- Venetianer P., Berberich M. A., Goldberger R. F. Studies on the size of the messenger-RNA transcribed from the histidine operon during simultaneous and sequential depression. Biochim Biophys Acta. 1968 Aug 23;166(1):124–133. doi: 10.1016/0005-2787(68)90496-6. [DOI] [PubMed] [Google Scholar]
- Vescia A. Separation of two leucyl-ribonucleic acid synthetases from rat liver. Biochem Biophys Res Commun. 1967 Nov 30;29(4):496–500. doi: 10.1016/0006-291x(67)90511-6. [DOI] [PubMed] [Google Scholar]
- Vogel Z., Zamir A., Elson D. On the specificity and stability of an enzyme that hydrolyzes N-substituted aminoacyl-transfer RNA's. Proc Natl Acad Sci U S A. 1968 Oct;61(2):701–707. doi: 10.1073/pnas.61.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLER J. P. THE NH2-TERMINAL RESIDUES OF THE PROTEINS FROM CELL-FREE EXTRACTS OF E. COLI. J Mol Biol. 1963 Nov;7:483–496. doi: 10.1016/s0022-2836(63)80096-0. [DOI] [PubMed] [Google Scholar]
- WATSON J. D. THE SYNTHESIS OF PROTEINS UPON RIBOSOMES. Bull Soc Chim Biol (Paris) 1964;46:1399–1425. [PubMed] [Google Scholar]
- Waldenström J. Purification and some properties of lysyl ribonucleic acid synthetase from Escherichia coli. Eur J Biochem. 1968 Feb;3(4):483–487. doi: 10.1111/j.1432-1033.1967.tb19556.x. [DOI] [PubMed] [Google Scholar]
- Waldenström J. Some properties of lysyl ribonucleic acid synthetase from Escherichia coli. Eur J Biochem. 1968 Jul;5(2):239–245. doi: 10.1111/j.1432-1033.1968.tb00363.x. [DOI] [PubMed] [Google Scholar]
- Waters L. C., Novelli G. D. A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc Natl Acad Sci U S A. 1967 Apr;57(4):979–985. doi: 10.1073/pnas.57.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waters L. C., Novelli G. D. The early change in E. coli leucine tRNA after infection with bacteriophage T2. Biochem Biophys Res Commun. 1968 Sep 30;32(6):971–976. doi: 10.1016/0006-291x(68)90123-x. [DOI] [PubMed] [Google Scholar]
- Webster R. E., Engelhardt D. L., Zinder N. D. In vitro protein synthesis: chain initiation. Proc Natl Acad Sci U S A. 1966 Jan;55(1):155–161. doi: 10.1073/pnas.55.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigert M. G., Garen A. Base composition of nonsense codons in E. coli. Evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase. Nature. 1965 Jun 5;206(988):992–994. doi: 10.1038/206992a0. [DOI] [PubMed] [Google Scholar]
- Weigert M. G., Lanka E., Garen A. Base composition of nonsense codons in Escherichia coli II. The N2 codon UAA. J Mol Biol. 1967 Feb 14;23(3):391–400. doi: 10.1016/s0022-2836(67)80113-x. [DOI] [PubMed] [Google Scholar]
- Weisblum B., Davies J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev. 1968 Dec;32(4 Pt 2):493–528. [PMC free article] [PubMed] [Google Scholar]
- Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
- Weiss S. B., Hsu W. T., Foft J. W., Scherberg N. H. Transfer RNA coded by the T4 bacteriophage genome. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114–121. doi: 10.1073/pnas.61.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissbach H., Redfield B. Deformylation of N-formylmethionine by Escherichia coli extracts. Biochem Biophys Res Commun. 1967 Apr 7;27(1):7–11. doi: 10.1016/s0006-291x(67)80031-7. [DOI] [PubMed] [Google Scholar]
- Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang S. S., Comb D. G. Distribution of multiple forms of lysyl transfer RNA during early embryogenesis of sea urchin, Lytechinus variegatus. J Mol Biol. 1968 Jan 14;31(1):138–142. doi: 10.1016/0022-2836(68)90062-4. [DOI] [PubMed] [Google Scholar]
- Yang W. K., Novelli G. D. Isoaccepting +RNA's in mouse plasma cell tumors that synthesize different myeloma protein. Biochem Biophys Res Commun. 1968 May 23;31(4):534–539. doi: 10.1016/0006-291x(68)90510-x. [DOI] [PubMed] [Google Scholar]
- Yaniv M., Jacob F., Gros F. Mutations thermosensibles des systèmes activant la valine chez E. coli. Bull Soc Chim Biol (Paris) 1965;47(8):1609–1626. [PubMed] [Google Scholar]
- Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarus M., Berg P. Recognition of tRNA by aminoacyl tRNA synthetases. J Mol Biol. 1967 Sep 28;28(3):479–490. doi: 10.1016/s0022-2836(67)80098-6. [DOI] [PubMed] [Google Scholar]
- Yoshida M., Furuichi Y., Kaziro Y., Ukita T. The modification of nucleosides and nucleotides. IX. Inactivation of coding response of yeast tRNA containing inosine residue by cyanoethylation. Biochim Biophys Acta. 1968 Oct 29;166(3):636–645. [PubMed] [Google Scholar]
- Yu C. T., Rappaport H. P. Multiple fractions of leucyl-transfer ribonucleic acid synthetase activity from Escherichia coli. Biochim Biophys Acta. 1966 Jul 20;123(1):134–141. doi: 10.1016/0005-2787(66)90166-3. [DOI] [PubMed] [Google Scholar]
- Zachau H. G. Serine specific transfer ribonucleic acids. 16. Aggregation of serine specific transfer ribonucleic acids. Eur J Biochem. 1968 Sep 24;5(4):559–566. doi: 10.1111/j.1432-1033.1968.tb00406.x. [DOI] [PubMed] [Google Scholar]
- Zamir A., Leder P., Elson D. A ribosome-catalyzed reaction between N-formylmethionyl-trna and puromycin. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1794–1801. doi: 10.1073/pnas.56.6.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinder N. D., Engelhardt D. L., Webster R. E. Punctuation in the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:251–256. doi: 10.1101/sqb.1966.031.01.033. [DOI] [PubMed] [Google Scholar]