Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588

Biochemistry of actomyosin-dependent cell motility (a review).

E D Korn
PMCID: PMC411302  PMID: 147464

Abstract

Actins and myosins similar to the major proteins of muscle are the major molecular components of intricate mechanochemical systems that perform numerous vital motility and structural functions in all eukaryotic cells. In this article, after a brief summary of the morphological distribution and ultrastructure of actin, myosin, and interrelated proteins of nonmuscle cells, our present knowledge of their biochemistry is critically appraised from the perspective that understanding complex cellular processes depends ultimately on the identification, purification, and biochemical characterization of the proteins involved. Although few conclusions are reached, possible molecular mechanisms for cellular regulation of actin polymerization, filament association, actomyosin ATPase activity, and mechanochemical coupling are discussed and a number of potentially fruitful directions for further research are suggested. These include comparative biochemical investigations and the study of the interaction of heterologous proteins, but particular emphasis is given to the need for quantitative studies at the molecular level of motility proteins purified from a single cellular source.

Full text

PDF
588

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz J. W., Stracher A., Detwiler T. C. A second form of actin: platelet microfilaments depolymerized by ATP and divalent cations. Arch Biochem Biophys. 1975 Mar;167(1):230–237. doi: 10.1016/0003-9861(75)90459-2. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S., Conti M. A., Anderson W., Jr Phosphorylation of human platelet myosin. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3115–3119. doi: 10.1073/pnas.70.11.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adelstein R. S., Conti M. A., Johnson G. S., Pastan I., Pollard T. D. Isolation and characterization of myosin from cloned mouse fibroblasts. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3693–3697. doi: 10.1073/pnas.69.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
  5. Adelstein R. S., Pollard T. D., Kuehl W. M. Isolation and characterization of myosin and two myosin fragments from human blood platelets. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2703–2707. doi: 10.1073/pnas.68.11.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Adler J. Chemotaxis in bacteria. Annu Rev Biochem. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. [DOI] [PubMed] [Google Scholar]
  7. Amphlett G. W., Vanaman T. C., Perry S. V. Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actinomyosin. FEBS Lett. 1976 Dec 15;72(1):163–168. doi: 10.1016/0014-5793(76)80836-8. [DOI] [PubMed] [Google Scholar]
  8. Ash J. F. Purification and characterization of myosin from the clonal rat glial cell strain C-6. J Biol Chem. 1975 May 10;250(9):3560–3566. [PubMed] [Google Scholar]
  9. Avissar N., de Vries A., Ben-Shaul Y., Cohen I. Actin-activated ATPase from human erythrocytes. Biochim Biophys Acta. 1975 Jan 14;375(1):35–43. doi: 10.1016/0005-2736(75)90070-x. [DOI] [PubMed] [Google Scholar]
  10. Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
  11. Berl S., Puszkin S. Mg2+ -Ca2+ -activated adenosine triphosphatase system isolated from mammalian brain. Biochemistry. 1970 May 12;9(10):2058–2067. doi: 10.1021/bi00812a005. [DOI] [PubMed] [Google Scholar]
  12. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Borisy G. G., Olmsted J. B., Marcum J. M., Allen C. Microtubule assembly in vitro. Fed Proc. 1974 Feb;33(2):167–174. [PubMed] [Google Scholar]
  14. Brandon D. L. The identification of myosin in rabbit hepatocytes. Eur J Biochem. 1976 May 17;65(1):139–146. doi: 10.1111/j.1432-1033.1976.tb10398.x. [DOI] [PubMed] [Google Scholar]
  15. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  16. Bryan J. Biochemical properties of microtubules. Fed Proc. 1974 Feb;33(2):152–157. [PubMed] [Google Scholar]
  17. Brysk M. M., Gray R. H., Bernstein I. A. Tonofilament protein from newborn rat epidermis. Isolation, localization, and biosynthesis of marker of epidermal differentiation. J Biol Chem. 1977 Mar 25;252(6):2127–2133. [PubMed] [Google Scholar]
  18. Burridge K., Bray D. Purification and structural analysis of myosins from brain and other non-muscle tissues. J Mol Biol. 1975 Nov 25;99(1):1–14. doi: 10.1016/s0022-2836(75)80154-9. [DOI] [PubMed] [Google Scholar]
  19. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cande W. Z., Lazarides E., McIntosh J. R. A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence. J Cell Biol. 1977 Mar;72(3):552–567. doi: 10.1083/jcb.72.3.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Carlsson L., Nyström L. E., Lindberg U., Kannan K. K., Cid-Dresdner H., Lövgren S. Crystallization of a non-muscle actin. J Mol Biol. 1976 Aug 15;105(3):353–366. doi: 10.1016/0022-2836(76)90098-x. [DOI] [PubMed] [Google Scholar]
  22. Chacko S., Conti M. A., Adelstein R. S. Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci U S A. 1977 Jan;74(1):129–133. doi: 10.1073/pnas.74.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chock S. P., Chock P. B., Eisenberg E. Pre-steady-state kinetic evidence for a cyclic interaction of myosin subfragment one with actin during the hydrolysis of adenosine 5'-triphosphate. Biochemistry. 1976 Jul 27;15(15):3244–3253. doi: 10.1021/bi00660a013. [DOI] [PubMed] [Google Scholar]
  24. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  25. Clarke F. M., Morton D. J. Aldolase binding to actin-containing filaments. Formation of paracrystals. Biochem J. 1976 Dec 1;159(3):797–798. doi: 10.1042/bj1590797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Clarke M., Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. Isolation and characterization of myosin from amoebae of Dictyostelium discoideum. J Mol Biol. 1974 Jun 25;86(2):209–222. doi: 10.1016/0022-2836(74)90013-8. [DOI] [PubMed] [Google Scholar]
  27. Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
  28. Cohen I., Cohen C. A tropomyosin-like protein from human platelets. J Mol Biol. 1972 Jul 21;68(2):383–387. doi: 10.1016/0022-2836(72)90220-3. [DOI] [PubMed] [Google Scholar]
  29. Cohen I., Kaminski E., De Vries A. Actin-linked regulation of the human platelet contractile system. FEBS Lett. 1973 Aug 15;34(2):315–317. doi: 10.1016/0014-5793(73)80820-8. [DOI] [PubMed] [Google Scholar]
  30. Condeelis J. S. The isolation of microquantities of myosin from Amoeba proteus and Chaos carolinensis. Anal Biochem. 1977 Apr;78(2):374–394. doi: 10.1016/0003-2697(77)90099-9. [DOI] [PubMed] [Google Scholar]
  31. Creutz C. E. Isolation, characterization and localization of bovine adrenal medullary myosin. Cell Tissue Res. 1977 Mar 1;178(1):17–38. doi: 10.1007/BF00232821. [DOI] [PubMed] [Google Scholar]
  32. Dahl D., Bignami A. Glial fibrillary acidic protein from normal and gliosed human brain. Demonstration of multiple related polypeptides. Biochim Biophys Acta. 1975 Mar 28;386(1):41–51. doi: 10.1016/0005-2795(75)90244-5. [DOI] [PubMed] [Google Scholar]
  33. Daniel J. L., Adelstein R. S. Isolation and properties of platelet myosin light chain kinase. Biochemistry. 1976 Jun 1;15(11):2370–2377. doi: 10.1021/bi00656a019. [DOI] [PubMed] [Google Scholar]
  34. Davies P., Bechtel P., Pastan I. Filamin inhibits actin activation of heavy meromyosin ATPase. FEBS Lett. 1977 May 15;77(2):228–232. doi: 10.1016/0014-5793(77)80240-8. [DOI] [PubMed] [Google Scholar]
  35. Davies P., Shizuta Y., Olden K., Gallo M., Pastan I. Phosphorylation of filamin and other proteins in cultured fibroblasts. Biochem Biophys Res Commun. 1977 Jan 10;74(1):300–307. doi: 10.1016/0006-291x(77)91408-5. [DOI] [PubMed] [Google Scholar]
  36. DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
  37. Dedman J. R., Potter J. D., Means A. R. Biological cross-reactivity of rat testis phosphodiesterase activator protein and rabbit skeletal muscle troponin-C. J Biol Chem. 1977 Apr 10;252(7):2437–2440. [PubMed] [Google Scholar]
  38. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  39. Eisenberg E., Dobkin L., Kielley W. W. Heavy meromyosin: evidence for a refractory state unable to bind to actin in the presence of ATP. Proc Natl Acad Sci U S A. 1972 Mar;69(3):667–671. doi: 10.1073/pnas.69.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Elzinga M., Collins J. H., Kuehl W. M., Adelstein R. S. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2687–2691. doi: 10.1073/pnas.70.9.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Elzinga M., Maron B. J., Adelstein R. S. Human heart and platelet actins are products of different genes. Science. 1976 Jan 9;191(4222):94–95. doi: 10.1126/science.1246600. [DOI] [PubMed] [Google Scholar]
  42. Fine R. E., Blitz A. L. A chemical comparison of tropomyosins from muscle and non-muscle tissues. J Mol Biol. 1975 Jul 5;95(3):447–454. doi: 10.1016/0022-2836(75)90202-8. [DOI] [PubMed] [Google Scholar]
  43. Fine R. E., Blitz A. L., Hitchcock S. E., Kaminer B. Tropomyosin in brain and growing neurones. Nat New Biol. 1973 Oct 10;245(145):182–186. doi: 10.1038/newbio245182a0. [DOI] [PubMed] [Google Scholar]
  44. Fine R., Lehman W., Head J., Blitz A. Troponin C in brain. Nature. 1975 Nov 20;258(5532):260–267. doi: 10.1038/258260a0. [DOI] [PubMed] [Google Scholar]
  45. Fujime S. Quasi-elastic scattering of laser light. A new tool for the dynamic study of biological macromolecules. Adv Biophys. 1972;3:1–43. [PubMed] [Google Scholar]
  46. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  48. Goli D. E., Suzuki A., Temple J., Holmes G. R. Studies on purified -actinin. I. Effect of temperature and tropomyosin on the -actinin-F-actin interaction. J Mol Biol. 1972 Jun 28;67(3):469–488. doi: 10.1016/0022-2836(72)90464-0. [DOI] [PubMed] [Google Scholar]
  49. Gordon D. J., Boyer J. L., Korn E. D. Comparative biochemistry of non-muscle actins. J Biol Chem. 1977 Nov 25;252(22):8300–8309. [PubMed] [Google Scholar]
  50. Gordon D. J., Eisenberg E., Korn E. D. Characterization of cytoplasmic actin isolated from Acanthamoeba castellanii by a new method. J Biol Chem. 1976 Aug 10;251(15):4778–4786. [PubMed] [Google Scholar]
  51. Gordon D. J., Yang Y. Z., Korn E. D. Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. J Biol Chem. 1976 Dec 10;251(23):7474–7479. [PubMed] [Google Scholar]
  52. Gratzer W. B., Beaven G. H. Properties of the high-molecular-weight protein (spectrin) from human-erythrocyte membranes. Eur J Biochem. 1975 Oct 15;58(2):403–409. doi: 10.1111/j.1432-1033.1975.tb02387.x. [DOI] [PubMed] [Google Scholar]
  53. Górecka A., Aksoy M. O., Hartshorne D. J. The effect of phosphorylation of gizzard myosin on actin activation. Biochem Biophys Res Commun. 1976 Jul 12;71(1):325–331. doi: 10.1016/0006-291x(76)90286-2. [DOI] [PubMed] [Google Scholar]
  54. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  55. Hartwig J. H., Stossel T. P. Interactions of actin, myosin, and an actin-binding protein of rabbit pulmonary macrophages. III. Effects of cytochalasin B. J Cell Biol. 1976 Oct;71(1):295–303. doi: 10.1083/jcb.71.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  57. Heggeness M. H., Wang K., Singer S. J. Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3883–3887. doi: 10.1073/pnas.74.9.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Hiller G., Weber K. Spectrin is absent in various tissue culture cells. Nature. 1977 Mar 10;266(5598):181–183. doi: 10.1038/266181a0. [DOI] [PubMed] [Google Scholar]
  59. Hilmen M., Silverman M., Simon M. The regulation of flagellar formation and function. J Supramol Struct. 1974;2(2-4):360–371. doi: 10.1002/jss.400020225. [DOI] [PubMed] [Google Scholar]
  60. Hitchcock S. E. Regulation of motility in nonmuscle cells. J Cell Biol. 1977 Jul;74(1):1–15. doi: 10.1083/jcb.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hosey M. M., Tao M. Selective phosphorylation of erythrocyte membrane proteins by the solubilized membrane protein kinases. Biochemistry. 1977 Oct 18;16(21):4578–4583. doi: 10.1021/bi00640a007. [DOI] [PubMed] [Google Scholar]
  62. Huxley A. F. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PMC free article] [PubMed] [Google Scholar]
  63. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  64. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Kato T., Tonomura Y. Ca2+-sensitivity of actomyosin ATPase purified from Physarum polycephalum. J Biochem. 1975 Jun;77(6):1127–1134. [PubMed] [Google Scholar]
  67. Kato T., Tonomura Y. Physarum tropomyosin-troponin complex. Isolation and properties. J Biochem. 1975 Sep;78(3):583–588. doi: 10.1093/oxfordjournals.jbchem.a130943. [DOI] [PubMed] [Google Scholar]
  68. Kirkpatrick F. H. Interaction of spectrin with muscle actin detected by spin labelling. Biochem Biophys Res Commun. 1976 Mar 8;69(1):225–229. doi: 10.1016/s0006-291x(76)80296-3. [DOI] [PubMed] [Google Scholar]
  69. Kirkpatrick F. H., Woods G. M., La Celle P. L., Weed R. I. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes. J Supramol Struct. 1975;3(5-6):415–425. doi: 10.1002/jss.400030504. [DOI] [PubMed] [Google Scholar]
  70. Kirkpatrick F. H., Woods G. M., Weed R. I., La Celle P. L. Fractionation of spectrin by differential precipitation with calcium. Arch Biochem Biophys. 1976 Aug;175(2):367–372. doi: 10.1016/0003-9861(76)90523-3. [DOI] [PubMed] [Google Scholar]
  71. Korn E. D., Bowers B., Batzri S., Simmons S. R., Victoria E. J. Endycytosis and exocytosis: role of microfilaments and involvement of phospholipids in membrane fusion. J Supramol Struct. 1974;2(5-6):517–528. doi: 10.1002/jss.400020502. [DOI] [PubMed] [Google Scholar]
  72. Korn E. D., Wright P. L. Macromolecular composition of an amoeba plasma membrane. J Biol Chem. 1973 Jan 25;248(2):439–447. [PubMed] [Google Scholar]
  73. Kuo I. C., Coffee C. J. Bovine adrenal medulla troponin-C. Demonstration of a calcium-dependent conformational change. J Biol Chem. 1976 Oct 25;251(20):6315–6319. [PubMed] [Google Scholar]
  74. Kuo I. C., Coffee C. J. Purification and characterization of a troponin-C-like protein from bovine adrenal medulla. J Biol Chem. 1976 Mar 25;251(6):1603–1609. [PubMed] [Google Scholar]
  75. LINBERG U. PURIFICATION OF AN INHIBITOR OF PANCREATIC DEOXYRIBONUCLEASE FROM CALF SPLEEN. Biochim Biophys Acta. 1964 Feb 10;82:237–248. [PubMed] [Google Scholar]
  76. Laki K., Muszbek L. On the interaction of F-actin with fibrin. Biochim Biophys Acta. 1974 Dec 18;371(2):519–525. doi: 10.1016/0005-2795(74)90048-8. [DOI] [PubMed] [Google Scholar]
  77. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
  79. Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lindberg M. U. Crystallization from calf spleen of two inhibitors of deoxyribonuclease I. J Biol Chem. 1966 Mar 10;241(5):1246–1249. [PubMed] [Google Scholar]
  81. Lindberg U. Purification from calf spleen of two inhibitors of deoxyribonuclease. I. Physical and chemical characterization of the inhibitor II. Biochemistry. 1967 Jan;6(1):323–335. doi: 10.1021/bi00853a049. [DOI] [PubMed] [Google Scholar]
  82. Léger J. J., Marotte F. The effects of concentrated salt solutions on the structure and the enzymatic activity of myosin molecules from skeletal and cardiac muscles. FEBS Lett. 1975 Mar 15;52(1):17–21. doi: 10.1016/0014-5793(75)80627-2. [DOI] [PubMed] [Google Scholar]
  83. Mabuchi I. Myosin from starfish egg: properties and interaction with actin. J Mol Biol. 1976 Feb 5;100(4):569–582. doi: 10.1016/s0022-2836(76)80046-0. [DOI] [PubMed] [Google Scholar]
  84. Mahendran C., Berl S. Isolation of troponin-like complex from bovine brain cortex. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2273–2277. doi: 10.1073/pnas.74.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Mannherz H. G., Kabsch W., Leverman R. Crystals of skeletal muscle actin: pancreatic DNAase I complex. FEBS Lett. 1977 Feb 1;73(2):141–143. doi: 10.1016/0014-5793(77)80966-6. [DOI] [PubMed] [Google Scholar]
  86. Maruta H., Korn E. D. Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. J Biol Chem. 1977 Dec 10;252(23):8329–8332. [PubMed] [Google Scholar]
  87. Maruta H., Korn E. D. Acanthamoeba myosin II. J Biol Chem. 1977 Sep 25;252(18):6501–6509. [PubMed] [Google Scholar]
  88. Maruta H., Korn E. D. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J Biol Chem. 1977 Jan 10;252(1):399–402. [PubMed] [Google Scholar]
  89. Maruyama K. A study of beta-actinin, myofibrillar protein from rabbit skeletal muscle. J Biochem. 1971 Feb;69(2):369–386. doi: 10.1093/oxfordjournals.jbchem.a129476. [DOI] [PubMed] [Google Scholar]
  90. Maruyama K., Kamiya R., Kimura S., Hatano S. Beta-actinin-like protein from plasmodium. J Biochem. 1976 Apr;79(4):709–715. doi: 10.1093/oxfordjournals.jbchem.a131122. [DOI] [PubMed] [Google Scholar]
  91. Masaki T., Endo M., Ebashi S. Localization of 6S component of a alpha-actinin at Z-band. J Biochem. 1967 Nov;62(5):630–632. doi: 10.1093/oxfordjournals.jbchem.a128717. [DOI] [PubMed] [Google Scholar]
  92. McIntosh J. R. An introduction to microtubules. J Supramol Struct. 1974;2(2-4):385–392. doi: 10.1002/jss.400020227. [DOI] [PubMed] [Google Scholar]
  93. Mockrin S. C., Spudich J. A. Calcium control of actin-activated myosin adenosine triphosphatase from Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2321–2325. doi: 10.1073/pnas.73.7.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Mooseker M. S. Brush border motility. Microvillar contraction in triton-treated brush borders isolated from intestinal epithelium. J Cell Biol. 1976 Nov;71(2):417–433. doi: 10.1083/jcb.71.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Muhlrad A., Oplatka A. Phosphorylation of fibroblast myosin. FEBS Lett. 1977 May 1;77(1):37–40. doi: 10.1016/0014-5793(77)80188-9. [DOI] [PubMed] [Google Scholar]
  97. Nachmias V. T., Asch A. A calcium-sensitive preparation from Physarum polycephalum. Biochemistry. 1976 Sep 21;15(19):4273–4278. doi: 10.1021/bi00664a021. [DOI] [PubMed] [Google Scholar]
  98. Nachmias V. T. Calcium sensitivity of hybrid complexes of muscle myosin and Physarum proteins. Biochim Biophys Acta. 1975 Aug 19;400(2):208–221. doi: 10.1016/0005-2795(75)90176-2. [DOI] [PubMed] [Google Scholar]
  99. Nachmias V., Asch A. Actin mediated calcium dependency of actomyosin in a myxomycete. Biochem Biophys Res Commun. 1974 Sep 23;60(2):656–664. doi: 10.1016/0006-291x(74)90291-5. [DOI] [PubMed] [Google Scholar]
  100. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  101. Niederman R., Pollard T. D. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol. 1975 Oct;67(1):72–92. doi: 10.1083/jcb.67.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Olden K., Willingham M., Pastan I. Cell surface myosin in cultured fibroblasts. Cell. 1976 Jul;8(3):383–390. doi: 10.1016/0092-8674(76)90150-1. [DOI] [PubMed] [Google Scholar]
  103. Oriol C., Dubord C., Landon F. Crystallization of native striated-muscle actin. FEBS Lett. 1977 Jan 15;73(1):89–91. [PubMed] [Google Scholar]
  104. Painter R. G., Sheetz M., Singer S. J. Detection and ultrastructural localization of human smooth muscle myosin-like molecules in human non-muscle cells by specific antibodies. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1359–1363. doi: 10.1073/pnas.72.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Pinder J. C., Bray D., Gratzer W. B. Actin polymerisation induced by spectrin. Nature. 1975 Dec 25;258(5537):765–766. doi: 10.1038/258765a0. [DOI] [PubMed] [Google Scholar]
  106. Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
  107. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Pollard T. D. Electron microscopy of synthetic myosin filaments. Evidence for cross-bridge. Flexibility and copolymer formation. J Cell Biol. 1975 Oct;67(1):93–104. doi: 10.1083/jcb.67.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  110. Pollard T. D., Korn E. D. Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity. J Biol Chem. 1973 Jul 10;248(13):4691–4697. [PubMed] [Google Scholar]
  111. Pollard T. D., Korn E. D. Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J Biol Chem. 1973 Jan 25;248(2):448–450. [PubMed] [Google Scholar]
  112. Pollard T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J Cell Biol. 1976 Mar;68(3):579–601. doi: 10.1083/jcb.68.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Pollard T. D., Thomas S. M., Niederman R. Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells. Anal Biochem. 1974 Jul;60(1):258–266. doi: 10.1016/0003-2697(74)90152-3. [DOI] [PubMed] [Google Scholar]
  114. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  115. Pope B. J., Wagner P. D., Weeds A. G. Heterogeneity of myosin heavy chains in subfragment-1 isoenzymes rabbit skeletal myosin. J Mol Biol. 1977 Jan 25;109(3):470–473. doi: 10.1016/s0022-2836(77)80024-7. [DOI] [PubMed] [Google Scholar]
  116. Puszkin E. G., Maldonado R., Spaet T. H., Zucker M. B. Platelet myosin. Localization of the rod myosin fragment and effect of its antibodies on platelet function. J Biol Chem. 1977 Jun 25;252(12):4371–4378. [PubMed] [Google Scholar]
  117. Puszkin S., Kochwa S. Regulation of neurotransmitter release by a complex of actin with relaxing protein isolated from rat brain synaptosomes. J Biol Chem. 1974 Dec 10;249(23):7711–7714. [PubMed] [Google Scholar]
  118. Ralston G. B. Physico-chemical characterization of the spectrin tetramer from bovine erythrocyte membranes. Biochim Biophys Acta. 1976 Nov 11;455(1):163–172. doi: 10.1016/0005-2736(76)90161-9. [DOI] [PubMed] [Google Scholar]
  119. Ralston G. B. The influence of salt on the aggregation state of spectrin from bovine erythrocyte membranes. Biochim Biophys Acta. 1976 Sep 7;443(3):387–393. doi: 10.1016/0005-2736(76)90458-2. [DOI] [PubMed] [Google Scholar]
  120. Rodewald R., Newman S. B., Karnovsky M. J. Contraction of isolated brush borders from the intestinal epithelium. J Cell Biol. 1976 Sep;70(3):541–554. doi: 10.1083/jcb.70.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Roses A. D., Appel S. H. Erythrocyte protein phosphorylation. J Biol Chem. 1973 Feb 25;248(4):1408–1411. [PubMed] [Google Scholar]
  122. Rubenstein P. A., Spudich J. A. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. doi: 10.1073/pnas.74.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Rubin C. S., Rosen O. M. The role of cyclic AMP in the phosphorylation of proteins in human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Jan 23;50(2):421–429. doi: 10.1016/0006-291x(73)90857-7. [DOI] [PubMed] [Google Scholar]
  124. Sanger J. W. Presence of actin during chromosomal movement. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2451–2455. doi: 10.1073/pnas.72.6.2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Schechter N. M., Sharp M., Reynolds J. A., Tanford C. Erythrocyte spectrin. Purification in deoxycholate and preliminary characterization. Biochemistry. 1976 May 4;15(9):1897–1904. doi: 10.1021/bi00654a016. [DOI] [PubMed] [Google Scholar]
  127. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Scordilis S. P., Adelstein R. S. Myoblast myosin phosphorylation is a prerequisite for actin-activation. Nature. 1977 Aug 11;268(5620):558–560. doi: 10.1038/268558a0. [DOI] [PubMed] [Google Scholar]
  129. Scrodilis S. P., Anderson J. L., Pollack R., Adelstein R. S. Characterization of the myosin-phosphorylating system in normal murine astrocytes and derivative sv40 wild-type and A-mutant transformant. J Cell Biol. 1977 Sep;74(3):940–949. doi: 10.1083/jcb.74.3.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. See Y. P., Metuzals J. Purification and characterization of squid brain myosin. J Biol Chem. 1976 Dec 10;251(23):7682–7689. [PubMed] [Google Scholar]
  131. Sheetz M. P., Painter R. G., Singer S. J. Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry. 1976 Oct 5;15(20):4486–4492. doi: 10.1021/bi00665a024. [DOI] [PubMed] [Google Scholar]
  132. Shizuta Y., Shizuta H., Gallo M., Davies P., Pastan I. Purification and properties of filamin, and actin binding protein from chicken gizzard. J Biol Chem. 1976 Nov 10;251(21):6562–6567. [PubMed] [Google Scholar]
  133. Shoenberg C. F., Needham D. M. A study of the mechanism of contraction in vertebrate smooth muscle. Biol Rev Camb Philos Soc. 1976 Feb;51(1):53–104. doi: 10.1111/j.1469-185x.1976.tb01120.x. [DOI] [PubMed] [Google Scholar]
  134. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  135. Small J. V., Sobieszek A. Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20 000-Mr light chain of myosin. Eur J Biochem. 1977 Jun 15;76(2):521–530. doi: 10.1111/j.1432-1033.1977.tb11622.x. [DOI] [PubMed] [Google Scholar]
  136. Sobieszek A. Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin. Eur J Biochem. 1977 Mar 1;73(2):477–483. doi: 10.1111/j.1432-1033.1977.tb11340.x. [DOI] [PubMed] [Google Scholar]
  137. Spudich J. A., Cooke R. Supramolecular forms of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1975 Sep 25;250(18):7485–7491. [PubMed] [Google Scholar]
  138. Stevens F. C., Walsh M., Ho H. C., Teo T. S., Wang J. H. Comparison of calcium-binding proteins. Bovine heart and brain protein activators of cyclic nucleotide phosphodiesterase and rabbit skeletal muscle troponin C. J Biol Chem. 1976 Aug 10;251(15):4495–4500. [PubMed] [Google Scholar]
  139. Stossel T. P., Hartwig J. H. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. J Biol Chem. 1975 Jul 25;250(14):5706–5712. [PubMed] [Google Scholar]
  140. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Stossel T. P., Pollard T. D. Myosin in polymorphonuclear leukocytes. J Biol Chem. 1973 Dec 10;248(23):8288–8294. [PubMed] [Google Scholar]
  142. Stromer M. H., Goll D. E. Studies on purified -actinin. II. Electron microscopic studies on the competitive binding of -actinin and tropomyosin to Z-line extracted myofibrils. J Mol Biol. 1972 Jun 28;67(3):489–494. doi: 10.1016/0022-2836(72)90465-2. [DOI] [PubMed] [Google Scholar]
  143. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Szent-Györgyi A. G. Calcium regulation of muscle contraction. Biophys J. 1975 Jul;15(7):707–723. doi: 10.1016/S0006-3495(75)85849-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Tanaka H., Hatano S. Extraction of native tropomyosin-like substances from myxomycete plasmodium and the cross reaction between plasmodium F-actin and muscle native tropomyosin. Biochim Biophys Acta. 1972 Feb 29;257(2):445–451. doi: 10.1016/0005-2795(72)90297-8. [DOI] [PubMed] [Google Scholar]
  146. Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Trentham D. R., Eccleston J. F., Bagshaw C. R. Kinetic analysis of ATPase mechanisms. Q Rev Biophys. 1976 May;9(2):217–281. doi: 10.1017/s0033583500002419. [DOI] [PubMed] [Google Scholar]
  151. Walsh T. P., Clarke F. M., Masters C. J. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem J. 1977 Jul 1;165(1):165–167. doi: 10.1042/bj1650165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Wang K., Ash J. F., Singer S. J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4483–4486. doi: 10.1073/pnas.72.11.4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Wang K. Filamin, a new high-molecular-weight protein found in smooth muscle and nonmuscle cells. Purification and properties of chicken gizzard filamin. Biochemistry. 1977 May 3;16(9):1857–1865. doi: 10.1021/bi00628a015. [DOI] [PubMed] [Google Scholar]
  154. Wang K., Singer S. J. Interaction of filamin with f-actin in solution. Proc Natl Acad Sci U S A. 1977 May;74(5):2021–2025. doi: 10.1073/pnas.74.5.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Watterson D. M., Harrelson W. G., Jr, Keller P. M., Sharief F., Vanaman T. C. Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J Biol Chem. 1976 Aug 10;251(15):4501–4513. [PubMed] [Google Scholar]
  156. Weber K., Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4561–4564. doi: 10.1073/pnas.71.11.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
  158. Weihing R. R. Cytochalasin B inhibits actin-related gelation of HeLa cell extracts. J Cell Biol. 1976 Oct;71(1):303–307. doi: 10.1083/jcb.71.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Weihing R. R. Effects of myosin and heavy meromyosin on actin-related gelation of HeLa cell extracts. J Cell Biol. 1977 Oct;75(1):95–103. doi: 10.1083/jcb.75.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Weihing R. R., Korn E. D. Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N e -methyllysine. Biochemistry. 1972 Apr 11;11(8):1538–1543. doi: 10.1021/bi00758a032. [DOI] [PubMed] [Google Scholar]
  161. Weihing R. R., Korn E. D. Acanthamoeba actin. Isolation and properties. Biochemistry. 1971 Feb 16;10(4):590–600. doi: 10.1021/bi00780a008. [DOI] [PubMed] [Google Scholar]
  162. Whalen R. G., Butler-Browne G. S., Gros F. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2018–2022. doi: 10.1073/pnas.73.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Willingham M. C., Ostlund R. E., Pastan I. Myosin is a component of the cell surface of cultured cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4144–4148. doi: 10.1073/pnas.71.10.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Yang Y. Z., Gordon D. J., Korn E. D., Eisenberg E. Interaction between Acanthamoeba actin and rabbit skeletal muscle tropomyosin. J Biol Chem. 1977 May 25;252(10):3374–3378. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES