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INFORMATION ON LINKAGE in man is accumulated as a succession of samples, each
of which is typically small relative to the amount of data required to detect even
moderately close linkage. The best method of analysis for such sequential samples,
in the sense of requiring the least number of observations consistent with a given risk
of error, has been found to be a sequential probability ratio test (Wald, 1947).
It will now be shown that this test, in addition to minimizing the number of observa-
tions, is in other respects a useful method for the detection of linkage in man.

1. THE ASSUMPTIONS

Consider two gene loci, G and T, not necessarily on the same chromosome. An
individual of genotype GG' TT' may be of either of two possible phases, GT/G'T'
or G'T/GT', corresponding to his formation by the union of GT and G'T' gametes,
or of G'T and GT' gametes. If the G and T loci happen to be on the same chromosome,
these two phases correspond to the usual meanings of coupling and repulsion. In any
case, the frequencies of the four types of gametes produced by this individual, if he
is GT/G'T', will be

(1 - )GT, (1 - O)G'T', OGT', 4 OG'T,
whereas, if he is G'T/GT', they will be

4 OGT, 2 OG'T', (1 - )GT', 4 (1 -)G'T,

where a is the probability of recombination between the two loci (O < 0 < 1; nearly
always, 0 < 1/2).
Now, a sufficient set of assumptions for a "linkage" test is the following:
1. The parental genotypes are known with certainty, except for phase.
2. The segregation ratios are not disturbed by incomplete penetrance or differ-

ential viability.
3. The method of ascertainment and selection of families is properly allowed for.

With this postulational basis, the null hypothesis to be tested is that "the three
assumptions are correct and the recombination fraction in the population equals
1/2". Some of the alternative hypotheses are:

1. Incomplete penetrance or differential viability.
2. Biased ascertainment or selection of families.
3. Nonrandom segregation of nonhomologous chromosomes.
4. Co-existence of the two loci on the same chromosome (linkage).
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Although a distinction between nonrandom chromosome segregation and linkage
(which is presumably much the commoner of the two phenomena) will not be possible
until the human linkage groups are better known, it should not be difficult to recog-
nize the other disturbing factors in data that have been carefully collected and
reported.
The above assumptions are rather stringent and must be examined in detail.

Cases to be treated in this paper include incomplete ascertainment, uncertain
parental genotypes, and incomplete penetrance.
No attempt will be made to treat "linkage" tests in which the basis of either

character is not a single Mendelian factor. If the basis of one or both conditions is
multifactorial or unknown, "linkage" is at best ambiguous and generally cannot be
distinguished from any other phenotypic correlation which varies among families.
The exploration of these complicated situations may be of some interest, but to
include such characters on fancied "linkage" maps, as some authors have done, is
to depreciate the linkage maps that have been determined with some precision in
other organisms.

Since even the most conservative set of assumptions confounds linkage with
other phenomena, the burden of proof is on the investigator who asserts that a
particular example of linkage-like effects is evidence of true linkage. When two genes
satisfy regular Mendelian ratios, however, it is convenient to denote such effects as
linkage, with the assurance that this designation is rather precise, and that its
precision will increase as the human linkage map is developed.

2. CURRENT TEST PROCEDURES

The three methods most commonly used to detect human linkage are the method
of efficient scores (u scores), the Penrose sib-pair method, and the probability ratio
method of Haldane and Smith (1947). Smith (1953) has recently shown that they
are all really different forms of the nonsequential probability ratio test.

Valid scoring procedures were first applied to human linkage by Bernstein (1931),
who showed that each family can be assigned a score whose sum, expected value,
and variance provide a test of the null hypothesis in any body of data that is suffi-
ciently large for the distribution of the total score to be nearly normal. Bernstein's
scores were further developed by Hogben (1934) and Haldane (1934), but the
evolution by Fisher of a maximum likelihood scoring procedure made these methods
obsolete. Fisher (1935) was able to show that his u scores are more efficient than
Bernstein's scores for all linkage intensities and are, in fact, fully efficient in the
limit for loose linkage. Finney (1940 et seq.) has treated a great variety of cases by
u scores, which are now commonly considered to be the method of choice whenever
the amount of data is large and the families are not grouped into large pedigrees.
However, u scores have certain disadvantages, some of which Smith (1953) has
summarized as follows:

1. Although u scores are very easy to use when the parental genotype is com-

pletely Known (except for phase), the calculation of the variance may be intractable
when the parental genotypes are unknown. In large samples this can be circum-
vented by the use of a simple approximation (Smith, 1953).
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2. The u scores are fully efficient only in the limit for loose linkage, which it is
not practicable to detect. An ideal test would be efficient for moderate rather than
loose linkage.

3. Information about linkage can be greatly increased by using data involving 3
or more generations. It is not feasible to extract this information by u scores.

4. The assumption of normality for the total score may be far from true for
moderate sample sizes. Haldane (1946) has developed a normalizing transformation
for such cases, and shown that in one instance an exact test fails to confirm the
significance of a u score test.
The sib-pair method of Penrose has sometimes been recommended as an alter-

native to u scores when the parental genotypes are unknown. The investigations of
Finney (1942) do not support this recommendation, since in his data the sib-pair
method extracted only a small fraction of the information that could be obtained
by u scores. However, when one of the test characters is a rare recessive trait, the
sib-pair method fares somewhat better (Penrose, 1953). A serious disadvantage of
the method is that it may be quite inexact when, as the current procedure requires,
a family of size s > 2 is partitioned into all s(s - 1)/2 possible pairs (Penrose,
1953; Smith, 1953). Smith (1953) has shown how a large-sample correction for non-
independence of sib pairs may be applied, but its use destroys the principal ad-
vantage of the method, that of arithmetical simplicity. Finney (1941a) has pointed
out that the Penrose sib-pair method is particularly sensitive to heterogeneity in
gene frequencies when different populations are pooled. The sib-pair method can be
applied to traits whose mode of inheritance is unknown, but then the term "linkage"
is scarcely appropriate.
The probability ratio test of Haldane and Smith (1947) was devised to extract

information from families and pedigrees without making the assumption of nor-
mality that is required by the maximum likelihood method. Their test depends on
the theorem that the expected value of a probability ratio is 1 on the null hypothesis,
regardless of the alternative hypothesis (Wald, 1947). Since this is true for any simple
hypothesis, it must be true for any composite hypothesis, which is merely a weighted
average of simple hypotheses such that the sum of the weights is 1. Let A be a proba-
bility ratio for the test of the null hypothesis that C = 1/2 against some alternative
hypothesis. Then, on the null hypothesis, the inequality

A > A, (A > 1)

cannot occur with probability greater than 1/A, since if it did, this in itself would
be enough to raise the mean value E(A) to 1, and therefore the occurrence of a value
of A greater than A is at least as strong evidence against the null hypothesis as a
significance level of 1/A. Clearly this method of analysis has several advantages,
among them its reliability in small as well as large samples, its dependence solely on
elementary laws of probability, and the ease with which all kinds of families and
pedigrees may be combined. However, the method is conservative, and a recent
modification (average backward odds) is less efficient (Smith, 1953).
The three common methods of linkage detection in man do not exhaust the pro-

cedures that have been proposed, but of the current tests, the u statistics of Fisher

279



NEWTON E. MORTON

and Finney and the probability ratio method of Haldane and Smith are the best
alternatives to sequential tests.

3. SEQUENTIAL TEST PROCEDURES

Let f(y; 6) denote the distribution of a random variable y, where 6 is the recom-
bination fraction and successive observations on y are indicated by yi, y2, .**,
etc. The observation y = 1 signifies that f(y; 0) is of the form f(1; 6), and so on.
For example, double backcross families of size 2 have two possible forms of the
function f(y; 0), which may arbitrarily be specified by y = 1 and y = 2. Under the
conditions of Section 8 below,

f(1; 6) = 02 + (1 - 6)2
f(2; 6) = 20(1- 6).

Thus, a particular sample of 3 independent sib pairs might be yi, y2, y3 = 2, 1, 2,
and the probability of this sample is f(2; 6)f(1; 0)f(2; 0).

Let Ho be the null hypothesis that 6 = 1/2 and H1 be the alternative hypothesis
that 0 = Al . The probability that a sample ye,yI2 * * * yy is obtained is given by

plirn = f(y1 ; 01) * * * f(yin ; 01)

when H1 is true, and by

POM = f(y, ; 1/2) ... f(ym; 1/2)

when Ho is true. The sequential test (Wald, 1947) employs the probability ratio
pim/pom and two positive numbers A and B, with A > 1 and B < 1. For purposes
of practical computation it is much more convenient to work with the logarithm of
this ratio rather than the ratio itself, since

log Pln = log f(Y ; 6/) + + lg f(yrn ; 0l)
POrn f(yi; 1/2) ~ f(ym1 1/2)7

Let zi denote the ith term in this sum, viz.,

z i == log ff(Y l/)
=fof(yi;1/2)'

The test procedure is carried out as follows, the quantities zi (i = 1, 2, * *) being
used: with each accession of data (consisting of one or more families or pedigrees),
the cumulative sum zi + * - - + zn, is computed. If

log B < zo+ * - +zn < log A

the evidence on linkage is not decisive, and judgment with the preassigned sig-
nificance level and power must be suspended until more data can be collected. If

z1+ - - * +zm > log A

280



SEQUENTIAL TESTS

there is significant evidence for linkage under the assumptions of the test. If

Zi+ * * - +z,.< log B

the recombination fraction is significantly greater than 0h.
More data can always be used following a sequential test, either to estimate a

significant linkage or to detect or exclude linkage in the range 01 < 0 < 1/2, but this
latter enterprise may be unprofitable if a stringent choice was made for 01 .
The constants A and B are related to a, the probability of rejecting Ho when

Ho is true (a Type I error), and g, the probability of rejecting Hi when H1 is true
(a Type II error). In practice, two simple approximations are used to determine
A and B:

A_
a

1-a

Wald (1947) has shown that these approximations cannot result in any appreciable
increase in the value of either a or $, and that they may be used to obtain expres-
sions for 'the power function P(0) and the average sample number function E(n)
of a sequential test. These two functions determine the best sequential test for a
particular purpose and the extent of its superiority over nonsequential procedures.
Requirements to impose on these functions are suggested by the probability dis-
tribution of 0.

4. THE PROBABILITY DISTRIBUTION OF THE RECOMBINATION FRACTION 0

Haldane and Smith (1947) have suggested "chiefly from a comparison with the
known linkage values of Drosophila" that it may not be a bad approximation to
assume that the recombination fraction for linked genes has a uniform distribution
from 0 to 1/2. The distribution may also be arrived at more pedantically.

Consider a chromosome with genetic map length of L morgans, along which
gene loci are distributed uniformly. We need not assume that the genes are dis-
tributed uniformly along the physical chromosome, only that their locations on
the linkage map are so distributed. Choose two loci at random with locations C1
and C2, where C1 is the first locus chosen. The quantity w = C1- C2 is called
the map distance between the two loci (O < w < L). The cumulative density func-
tion of w may be represented on (C1/L, C2/L) coordinates by the area within a
unit square between the lines w = C2 - C1 and w = C1 - C2, or

F(w) = 2{2L2 - 1 (L - )2 = 2Lw-w

Kosambi (1944) has shown that the map distance w is related to the recombination
fraction 0 as

W = logI+201- <0 <
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assuming that the coincidence is 20. By this approximation

1+20 f + 0 2

F()=log120-201jog 1+-20~
2L 16L

and the probability distribution of 0 for linked genes, gotten by differentiating
F(0), is

1I+ 26
f(0) = 2L-Ilo 20

L2(1 -402)1 O< o< O' < 1/2

= 0 elsewhere.

The critical point 0' beyond which f(0) = 0 is determined by the equation

L = log 1+ 20' I tanh 1 20'4 1 - 20' =2.tnf 0

1-e

We may verify that f(0) is a density function over the interval 0 to 0';

F(0') = 4L 16L =1
2L -16L2

since

log 1 + 20' = 4L.

8 *-L z.50 Morgons 01

L xl.00

L-I.50
6

0 .10 .20 30 .40 .50
F

FIG. 1. The distribution of the recombination fraction 0 for chromosomes of length L
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TABLE 1.-THE DISTRIBUTION OF GENETIC MAP LENGTHS (L) IN DIFFERENT ORGANISMS

Source L =.25 L =.50 L =.75 L =l.00 L = 1.25 L =l.50 L = 2.00 L = 2.50 L = 3.00 LL/

Drosophilal - 1 2 -- - .345
Corn (Zea)2 1 1 3 2 2 1 - - .117
Mouse3 15 - 48 - 46 13 3 2 .058

Linkage map, neglecting the dot-like IVth chromosome, Liv = .002 (Bridges and Brehme,
1944).

2 Linkage map (Rhoades, 1950).
chiasma frequency

3 Based on chiasma frequency in random chromosomes, assuming L = c (Crew
2

and Koller, 1932).
Recent data (Carter, 1955) suggest that the average value of L in the mouse is nearer to unity

than here indicated, hence the distribution g(O) in Figure 2 should presumably be even closer to
uniformity.

Figure 1 shows f(0) corresponding to different values of L. For chromosomes of
length near unity (100 centimorgans) the distribution of 0 is almost uniform. In
fact, the recombination fraction has an exactly uniform distribution for chromosomes
of unit genetic length according to the simple mapping function 0 = w - 2 W
(0 < w < 1), for since F(w) = 2w - w2, the distribution of 0 is

F(0)= 20, 0 < 0 < 1/2

f(0) = 2.

Actually chromosomes of unit length are nearly modal in the few higher organisms
whose genetic maps are known. Table 1 gives the distribution of L for Drosophila,
corn, and (very approximately) for the mouse. On the assumption of a uniform
density of loci on the chromosome map, the probability distribution of the recombina-
tion fraction between two randomly chosen loci is

g(0) - LL f()

Figure 2 shows that in all three species g(0) is closely approximated by a uniform
distribution, and that the greatest departure from this approximation is for values
of 0 close to 1/2, which in practice could seldom be distinguished from independent
assortment. The distribution g(0) is probably much the same in man, where the
average genetic length, based on mean chiasma frequency, may be close to unity
(Schultz, unpublished; cited by Neel, 1949).
Table 1 may also be used to compute the probability 4 that two randomly chosen

loci be on the same chromosome. If the number of loci per chromosome is propor-
tional to L,

EL2 L2

(EL)2 n(1)2
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0 .10 .20 .30 .40 .50

FIG. 2. The distribution of the recombination fraction 0 for linked genes in three different species

where n is the haploid number of chromosomes. If all chromosomes are of equal
length, 4 = 1/n, and for the organisms tabulated this turns out to be a good ap-
proximation. In Drosophila, neglecting the dot-like IVth chromosome, n = 3,
4, = .345; in corn, n = 10, 4 = .117; in the mouse, n = 20, 0 = .058, or4 = .064
if pachytene length is proportional to L (Slizynski, 1949). In man, with 23 autosomes,
the frequency of autosomal linkage may reasonably be taken as 4 = .05, so that the
distribution of recombination values in man may be approximated as follows:

g(O) =2 = .10 0 < 0 < 1/2

=1 - =.95 0 = 1/2

= 0 elsewhere.

5. THE CHOICE OF A SEQUENTIAL TEST

The validity of a sequential test does not depend on the accuracy of these ap-
proximations, but they do suggest criteria by which a suitable sequential test may
be selected. We are especially anxious to avoid the assertion that two genes are
linked when in fact they are not, since a misleading linkage map is worse than no

linkage map at all. One source of linkage-like effects can be nearly eliminated by
considering only pairs of loci which satisfy our assumption that the expected segrega-
tion ratios for both loci are realized in the population sampled. However, cases of
apparent linkage will still be made up in part of true linkages, in part of Type I
errors. If the prior probability of linkage is , = .05, then the posterior probability
that a case of apparent linkage be a Type I error is

a(1-4) _ 19a
aC(I- + P 19a + P
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where P is the average power of the test, or the probability of detecting linkage
when it is present. R. S. Krooth (personal communication) has termed p the relia-
bility and P the sensitivity of a linkage test. Calculations of p for different values of
a and P show that the usual values of a are inadequate in this problem, and that
for the posterior probability of a Type I error to be less than .05, a must be about
.002 when P = .95, .001 when P = .60 and .0005 when P = .20 (cp. Haldane, 1934).
Having placed the requirement on a that it be small enough to reduce the pos-

terior probability of a Type I error to .05, we impose a second condition on the
power function of the test. To be at all useful, the test must have a power close to
unity for values of 0 near zero. We are at liberty to choose 01, the formal alternative
to Oo = 1/2, as near to 1/2 as we please, and the only adverse effect of this choice
is to increase the average sample number. On this reasoning it seems appropriate to
let 01 take the largest value which is likely to give a significant result in a practicably
large body of data, and to consider the average sample number function a basis for
the selection of a sequential test.
As an application of this argument, consider four sequential test procedures

defined by the relations

(1) 01= .05, A= 2000, B = .01, 0o= 1/2

(2) 01= .10, A= 1000, B= .01, 0o= 1/2

(3) 01= .20, A= 1000, B=.01, 0o= 1/2

(4) 0A= .30, A= 1000, B= .01, 00= 1/2

and assume that the data consist entirely of double backcross sibships of size 2,
sampled under the conditions of §8 below. The probability can take only the value
f(1; 0) = 6r- + (1 - 0)2, corresponding to a sib pair that is either concordant in both
traits or discordant in both, and f(2; 0) = 20(1 - 0), which corresponds to a sib
pair that is concordant in one trait and discordant in the other. Following Wald
(1947) and assuming that the excess over the boundaries at the termination of the
test can be neglected, we obtain a good approximation to the power function P(O)
by solving two equations for various values of h

( ) =Ah _ Bh

and f(y; 0) [f(y; 0) 1 .
f(y; 1/2)1-.

From the power function, again neglecting the excess over the boundaries, we
obtain the average sample number function as

Es(n) = P(0) log A + [1 - P(O)] log B
Ee(z)

where

Es(z) = E f(y; 0) log [f (Y1)].
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In particular,

Ee1(n) = (1-A) log A + (3 log B
Eel(z)

and

Ee,(n) = a log A + (1- a) log BEe0() ~~ Eseo(z) (Wald, 1947).

The power functions and average sample number functions for the four test
procedures are plotted in figures 3 and 4, the information from which is summarized
in table 2. All four tests have power greater than .99 for values of 0 less than .05
and power less than .03 for values of 0 greater than .40. In the intervening range, the
first test has good power at 0 = .10, the second is moderately good at 0 = .20, the
third has appreciable power at 0 = .30, and the fourth is good for all values of 0
less than 0 = .35. The value of a has been taken so as to keep the posterior proba-
bility of a Type I error (p) nearly constant and less than .05, provided that the
assumptions of the previous sections are satisfied. The average power P increases
from .28 to .71, and the average sample number, which represents the cost of this
gain in power, increases from 10 to 355.
The investigator will probably seldom have need for sequential tests outside the

above range. A test so insensitive as not to detect virtually all cases of close linkage
(0 < .05) is of little use, while an increase in sensitivity much beyond 0, = .30 re-
quires a prohibitively large average sample number: for example, when 0 = 1/2,
the test 0A = .40, A = 1000, B = .01 requires an average sample number of 5700
double backcross sib pairs.

e
FIG. 3. The power function P(O) for different values of 01. Double backcross sibships of size 2
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e
FIG. 4. The average sample number E(n) for different values of 0E. Double backcross sibships of size 2

6. THE NUMBERS OF OBSERVATIONS REQUIRED BY FIXED-SAMPLE-SIZE TESTS AND

SEQUENTIAL TESTS

The exposition so far has considered criteria by which a sequential test may be
chosen, and has suggested a battery of four tests which should be adequate for
most purposes. We still require, however, to select among these procedures and,
more immediately, to determine whether a sequential test is so superior to current
fixed-sample-size tests in efficiency, computational simplicity, or exactness that the
choice of a sequential test has more than academic interest.

For a start, we may calculate the number of independent double backcross sib
pairs required by current tests of strength (a, A). In the case of u statistics there are
two possible scores, 1 and -1, with frequencies 02 + (1 - 0)2 and 20(1 - 0) re-
spectively (Finney, 1940). The expected value of the score is ,ue = (1 - 20)2, with
variance 4e = (1- Ae)(1 + A). (Note that these symbols designate the expected
value and variance of the score, not of 0.) If the sample size is small, it may be
estimated by trial and error from a table of the cumulative binomial distribution,
using the parameters pi = 201(1- 01) and po = 20o(1- 0o) = 1/2. If the sample
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TABLE 2.-CHARACTERISTICS OF FOUR SEQUENTIAL TESTS

1= the formal alternative to the null hypothesis that 0 = li.
a = the probability of rejecting the null hypothesis when 0 =
P = the probability of accepting the null hypothesis when 0 01.

P(e) = the probability of detecting linkage when the true recombination fraction is 0.
P = the probability of detecting linkage when 0 is uniformly distributed between 0 and 12.
p = the probability that a significant "linkage" be a Type I error.

E(n) = the average number of double backcross sibships of size 2 required to terminate the test.

P(6)
el Cta P__ E (n)

6=.10 =.20 09=.30 0=.35

.05 .0005 .01 .86 .10 .006 .002 .28 .032 10

.10 .001 .01 .99 .46 .02 .006 .39 .046 19

.20 .001 .01 >.999 .99 .23 .025 .56 .032 68

.30 .001 .01 >.999 >.999 .99 .64 .71 .026 355

{*1/2
P = 2 f P(6) dO

19a

s1/2
E(n) .1010 Ee(n) dO + .95E,/2(n)

is sufficiently large, the distribution of the sample mean will be nearly normal,
and the following conditions will determine n(a, A), the required sample number:

Qd - MAo
[ago/N/n

LG e/v' I - 1-
a[d /uej-

where d is a preassigned constant defining the critical region of the test and

G(t)=.y fe-x2I22 k.

If we let to be the value for which G(to) = 1 - a, and t1 be the value for which
G(t1) = fl, and observe that Aeo = 0 and as, = 1, then the two conditions may be
written as

v¶ d = to

Vn-(d - Me) = ti (1 - jel)(1 + JL).

Solving the above equations, we obtain

[to - tiV(1 - ,2)(l +M -)]n = n(a, f0) =
Mel
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If this expression is not an integer, then, as in all formulae determining fixed sample
size, n(a, fl) is the smallest integer in excess (Wald, 1947).

In the case of the probability ratio test of Haldane and Smith (1947), there are
two possible values of the logarithm of the probability ratio, namely

ff(1; 01) ~1~z' = log Lf1;1/2)J= log (2 - 40 +40')

and Z" = log [f(2; 1
= log [461( 1- 1)].and L~~~~~~~f(2; 1/2) (1-0)]

The expected value of ze is go = - 20(1 - 0)(z' - z"), with variance

oil = (Z)2- 20(1 - 0) (z' - z")(z' + z") - (p)2
The first condition determining the sample size is

E z = log (1/a),
and if n is sufficiently large, the second condition becomes

- -o

V/n at

Solving for n, we obtain

n = n*(A, j) = [VT, + 4Mp1 log (1/a)-tiooil2
L ~~~~~2/Ael

For the Haldane-Smith test the true significance level a is less by a varying amount
than the nominal level a, so that in this respect the test is conservative. Smith
(1953) calculated that the median a is approximately a/10 for a = .001. The error
of the normal approximation in determining n(a, A) and n*(&, j3) is in the opposite
direction, since the alternative distribution is skewed toward 0o = 1/2, and there-
fore j3 and n tend to be underestimated. This error is negligible unless n is very
small, and in table 3, which gives the results of these calculations, the smallest
value of n(x, ,8) is in close agreement with an exact determination from the cumulative
binomial distribution.

TABLE 3.-THE AVERAGE SAMPLE NUMBER E(n) FOR A SEQUENTIAL TEST, COMPARED WITH THE
FIXED SAMPLE NUMBERS REQUIRED BY THE FISHER-FINNEY U SCORE TEST, n(a, a), AND THE

HALDANE-SMITH PROBABILITY RATIO TEST, n*(a, jS)
n the required number of double backcross sibships of size 2.

E(n)
el a h n(a, P) no(aO,)

.05 .0005 .01 9 20 34 49

.10 .001 .01 18 31 59 89

.20 .001 .01 67 103 214 328

.30 .001 .01 355 529 1,134 1,740

.40 .001 .01 5,700 8,546 18,324 28,420
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The conclusions from table 3 are quite simple and consistent. Of the fixed-sample-
size tests, u statistics require only about 2/3 as many observations for a given risk
of error as the Haldane-Smith probability ratio test. If, in view of the conservatism
of the latter test, a value of a ten times as large is used, the number of observations
required by the test is intermediate between n(a, A) and n*(c', p3), and is still ap-
preciably in excess of the sample size required by the u score test.

Although the superiority of the u score test over the Haldane-Smith probability
ratio test is marked, the superiority of the sequential test is even more striking.
When the alternative hypothesis is true, the sequential test requires only about
1/2 as many observations as a u score test of the same strength, and when the
null hypothesis is true (as it usually will be), the sequential test requires less than
1/3 as many observations as the u score test. Similar savings in the number of
observations have been found for other distributions by Wald (1947) and Bross
(1952).
For the detection of linkage we have knowledge that the user of a sequential test

does not ordinarily have, in that the approximate parameter distribution is known,
and we may calculate a mean sequential sample number E(n) averaged over this
distribution (table 2). Over the range of tests considered, the mean sample number
required by a sequential test of strength (a, f3) is less than 1/3 the number required
by a u score test of the same strength.

7. CLASSIFICATION OF FACTORS, MATINGS, AND METHODS OF SAMPLING

In view of the considerable saving in observations indicated in the last section,
sequential tests would seem to be the method of choice for the detection of linkage.
For practical use, the determination of probabilities must be extended to families
of different types and sizes. We first require a few definitions.

Consider two loci, G and T, which are to be tested for linkage. The genetic char-
acters which are determined by these loci may be divided into four classes. These are:

1. Recessive abnormalities, such as albinism. The symbols G,g or T,t will be
used for factors of this class.

2. Common recessives, such as the gene for the inability to taste phenylthio-
carbamide. Symbols G,g or T,t will also be used here.

3. Factors without dominance, the heterozygote being distinguishable from
both homozygotes. Sicklemia and the MN blood groups are examples of this class.
The letters G1, G2 or T1, T2 will be used for such factors.

4. "Dominant" abnormalities, such as ovalocytosis. The normal homozygote is
exceedingly rare (in most cases never having been observed), and all abnormal
persons are therefore assumed to be heterozygous. The symbol G, or Ti will be used
for the normal allele, G2 or T2 for the abnormal factor.

For a family to give information on linkage, neither parent may be GG or TT
and at least one parent must be doubly heterozygous. An informative mating is
termed a double backcross, a single backcross, or a double intercross according
to whether the other parent is doubly homozygous, singly heterozygous, or doubly
heterozygous. Since the phase of linkage is unknown, the probability for Pa double
or single backcross will consist of two terms, one for each possible phase of the
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doubly heterozygous parent, and the probability for a double intercross will consist
of three terms, corresponding to the possibilities that both parents are in coupling,
both in repulsion, or that one is in coupling and the other in repulsion. We shall
assume that the two phases are at equilibrium in the population, a condition that
should nearly always be closely approximated, except perhaps after recent hybridiza-
tion. On the null hypothesis this assumption is of course supererogatory.

It rarely happens that families selected for a linkage study are effectively a random
sample from the general population. Usually families are selected first on the basis
of the character determined by the "main" locus and are tested afterwards for the
character determined by the "test" locus. There are three methods of selecting
families on the basis of the main character (Bailey, 1951):

1. Selection through the parents or grandparents, without consideration of the
children. The sampling of families is effectively random, and in families of a given
mating type and size, the distribution of the number of children manifesting the
main character is a complete binomial series (complete selection).

2. Selection through the children themselves, with complete selection of affected
individuals. In families of a given mating type and size, the distribution of the
number of children manifesting the main character is a truncated binomial series,
with the first term missing (truncate selection).

3. Selection through the children, with incomplete selection of affected individuals.
The distribution of affected individuals in sibships of a given mating type and size
is not a truncated binomial, since families with large numbers of affected children
are more likely to be ascertained than families with a smaller number of abnormals
(arbitrary selection). This is the usual method of selection for recessive abnormalities
and a not uncommon method of selection for "dominant" abnormalities and rare
factors without dominance.
Except in cases of gross ascertainment bias, the test character is never subject

to incomplete selection of affected individuals (method 3).
It should be noted that these three methods of selecting families for analysis

subsume the rejection of some classes of ascertained families. The fundamental
attribute of each type of selection is the distribution to which it gives rise, regardless
of how the families were detected. For example, with recessive genes the propositus
is sometimes an affected parent mated to a normal dominant, who may be either
homozygous or heterozygous. A mating of a dominant parent is called "certain"
if there is at least one recessive child (in which case the dominant parent must be
heterozygous), and is called "doubtful" otherwise. Sampling is by method 1 or 2,
according to whether doubtful families are included or rejected. The method of
ascertainment is the same in both cases, but the method of selection is different,
and determines the proper method of analysis.

8. BOTH CHARACTERS SELECTED THROUGH THE PARENTS (COMPLETE SELECTION).
PARENTAL GENOTYPES KNOWN, BOTH PARENTS TESTED. COMPLETE PENETRANCE,

NO NATURAL SELECTION

Unless there is no dominance for either character, some of the families will usually
be of uncertain parental genotype. If these doubtful families are analysed separately
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TABLE 4.-MATINGS SCORED WITH z.. DOUBLE BACKCROSSES AND SINGLE BACKCROSSES WITH NO

DOMINANCE IN THE INTERCROQS FACTOR

s= a+b+c+d

Progeny Phenotype Unin-
Parental genotype Mating Progeny Phenotype forma-

Type -tive
a b c d Progeny

GgTtx gg tt 1 GT G t gT g t
GgT1T2X ggT1T 2 G T1GTgT2T, g TiT2 -
G1G2 Tt XGG tt 3 GI T GI t GG2T G1G2t -
GgT1T2XggTT2 4 G T1GT2 g T1 g T2 T1T2
G1G2 Tt X GIG2 tt 5 GI T GI t G2T G2 t GiG2
G1G2 T1T2 X GAG1 TIT1 6 GI T G1 'TT2 GiG2 T, G1G2 T1T2
G1G2 T1T2 X GiGi TIT2 7 G, T1 GI T2 G1G2 T1 G1G2 T2 T1T2
G1G2 TZT2 X G1G2 TITI 8 G1 T1 G1 TT2 G2 T, G2 T1T2 GiG2

Frequency a b c d Total

Coupling 1 1 -0 0 0 1 - 2
Repulsion 1 0 1-0 1-0 0 2

Total 1 1 1 1 4

z = log y(; ) = log 21 [o+d(1 - ,)b+e + ob+e(l - tl)a+d]

(see §12), then the methods of this section are appropriate to the certain families.
If the doubtful families are rejected, the certain families should be analysed by
the methods of §§9-10.

Neglecting multiple allelism, the possible kinds of certain families may be grouped
into 5 classes, which by the method of u scores have 3 essentially different scores
and 2 derived scores (Finney, 1940). In sequential tests the same classes exist. The
scores in a sequential test are "lods", or logarithms of the probability ratio, the
five functional forms of which may be denoted by zi, Z2 , Z3 X Z4 and z5, in exact
correspondence with the un X U31u U33u, 2u31, and 2un1 scoring types of Finney.

Tables 4-8 give the possible certain matings and the lod scores appropriate to
them. Matings scored with zl (table 4) comprise double backcrosses and those single
backcrosses in which there is no dominance for the intercross factor. There is thus
a one-to-one correspondence between progeny genotype and phenotype for both
loci. Note that some progeny have probabilities that are independent of the re-
combination fraction and phase, and therefore give no information on linkage.
Matings scored with Z2 (table 5) are single backcrosses with dominance in the inter-
cross factor. Matings scored with z3 (table 6) are double intercrosses with dominance
in both factors. Most matings of common occurrence are scored with the Zl, z2,
or z3 lods, of which the zl type is much the most informative.
The two remaining scoring types are of particular interest because the u score

method omits progeny from which information is extracted by the lod scores. Matings
scored with Z4 (table 7) are double intercrosses with dominance in only one factor.
There are six progeny phenotypes, the last two of which have probabilities that are

292



293SEQUENTIAL TESTS

TABLE 5.-MATINGS SCORED WITH Z2. SINGLE BACKCROSSES WITH DOMINANCE IN THE
'NTERCROSS FACTOR

Parental genotype

Gg Tt X Gg tt
Gg Tt X gg Tt
Gg T1T2 X Gg TiTi
GiG2 Tt X GiG, Tt

Mating
Type

9
10
11
12

Progeny pht
I

a

GT
GT
G Ti
Gi T

b

g T
G t
g T,
GI t

G
g I
G
Gil

enotype forma-
tive

c d Progeny

t gt

g t

TiT2 g TT2
G2 T G1G2 t

Frequency a b c d Total

Coupling 1 2-0 0 1 + 0 1-0 4
Repulsion 1 1 + 0 1-0 2-0 0 4

Total 3 1 3 1 8

f(y;O) 2--B - I)aob (I + c)c(l - dl) + (I + 0l) (1 _ 0,) ( - djZ2 = log = log -&+ [(2 - )~ 1 +0)(o)+(1+Oa1-o)(2 - ,)

TABLE 6.-MATINGS SCORED WITH za. DOUBLE INTERCROSSES WITH DOMINANCE IN BOTH FACTORS

Parental genotype
Progeny phenotype UninformativeParenalgeotype Mating TypePrgn

a b d Prgn

GgTtXGgTt 13 GT Gt gT gt,

Frequency a b c d Total

GT/gtXGT/gt 1 3-20 +02 0(2-0) 0(2-0) (1-0)2 4
GT/gtXGt/gT 2 2 + 0 02 1-0 +02 1-0 + 02 0(1-0) 8
Gt/gTXGt/gT 1 2 + 02 1-02 1-02 02 4

Total .9 3 3 1 16

Z3 logf(y; =) lg9alg4 [(3 - 20, + 92)&a+ (2 - 9,)b+c (1 _ )2d + 2 (2 + 0- °)a

(1-01+ 91)bce d (1( I )d + (2 + 02)a (1 92)b+C o2d]

linear functions of 0(1 - 0), whereas the other four types include terms which are
not linear in 0(1 - 0), like 02. When 0 -> 1/2, the deviation of 0(1- 0) from 1/4
is vanishingly small compared with the deviation of 02 from 1/4, and the last two
classes contribute almost no information on linkage. It is not surprising, therefore,
that when the probability is expanded in powers of 1 - 20, and the cubic and higher
terms neglected, the appropriate u score is a function of only the first four classes
(Finney, 1940). Since loose linkage (0 -+ 1/2) is never in practice distinguished
from non-linkage (0 = 1/2), the important consideration is that the information
contributed by the neglected progeny (which constitute 1/2 of the total children)
is not negligible when 0 is small.



NEWTON E. MORTON

+Q

+

++

+

4+

I~

o/

0
H

K

FZ-)

z

0W

t)

U)E-)

z

N

N-4

u
V

U)

U)

'C:

z

00

¢

P4-

294

P4

z
0

z

z

0 +

0+
p: n

U)

CJ)

'4:

4:

fi

+

+
+

+

+
,
t

+

+

+

0_



SEQUENTIAL TESTS

Matings scored with z5 (table 8) are double intercrosses with no dominance in
either factor. The lod score is based on 9 distinguishable progeny classes, the last 5
of which contribute no information when 0 -÷ 1/2, and are therefore neglected in
computing the u scores (Finney, 1940). When 0 is small, however, the information
contained in these children (which constitute 3/4 of the progeny) is no longer negli-
gible.

9. ONE CHARACTER SELECTED THROUGH THE PARENTS (COMPLETE SELECTION), THE

OTHER THROUGH THE CHILDREN (INCOMPLETE SELECTION). PARENTAL GENOTYPES

KNOWN, BOTH PARENTS TESTED. COMPLETE PENETRANCE, NO NATURAL SELECTION

For convenience we may denote the factor that is selected through the children
by G,g, G1, or G2, and the factor selected through the parents by T, t, T1, or T2 .
The method of this section is appropriate only if families of doubtful parental geno-
type with regard to the T locus are not rejected (section 12); the selection of the G
factor is arbitrary.

In a family of size s let there be si children of one G type, say G, and S2 of the
other (si + S2 = s). The prior probability of the family will be designated by f(y;0)
and the conditional probability by f(y;0 s1). Then

f(y;0 Si) = f(y;0)
P(Sl,S2)

where P(sl,s2) is the probability measure of the selected class of families. Since the
two characters are selected independently, and the probabilities which are pooled
in P(sI,s2) are complementary, P(sl,s2) is independent of 0 and of the phase of linkage
and cancels when the probability ratio is formed. Thus the probability ratio and
the lod score derived from it have the convenient property of being invariant with
respect to biased sampling of one character only, and families selected in this way
are scored just as if both characters had been ascertained through the parents
(Smith, 1953).

10. BOTH CHARACTERS SELECTED THROUGH THE CHILDREN, COMPLETE SELECTION OF

AFFECTED INDIVIDUALS (TRUNCATE SELECTION). PARENTAL GENOTYPES KNOWN,
BOTH PARENTS TESTED. COMPLETE PENETRANCE, NO NATURAL SELECTION

Families in which the parental genotype is unknown for either factor are rejected.
The condition on both factors makes the marginal distribution of the selected
families a function of 0, and the methods of the previous sections require modifica-
tion. There are three types to be considered, corresponding to the zi, z2, and z3
scoring types. We shall suppose that the selected factors are g and t, since only
matings in which both characters are common recessives are likely to be selected in
this way.

(1) The zi scoring type (Mating 1)
The distribution of the selected families is

f(Y;0 g, t =
f(y;0)f~y;g, ) -P(g~t)
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where P(g,t) is the probability that a mating of this type have at least one g and
one t child. To satisfy this condition, it is sufficient that c + d 5 0 and b + d H 0.
Therefore,

P(g,t) = 1 - P(c + d = 0)-P(b + d = 0) + P(b + c + d = 0).
s s I{(1_@a (Os-a +1 (1 -9) a)

But P(c + d = 0) = : (:{ 19-(~~ + 1 )' Oa

= (1/2)9 = P(b + d 0)

and P(b + c + d = 0) = P(a = s) = 1 2 6) + ()}and so

P(g,t) = 2' - 2 + 26' + 2(1 -6)'2' 2

It follows that

log f(y;.l gt) log f(Y;01) + log P (g,t; I/2)
f(y;11/2 g,t) =o f(y;1!/2) +lgP(g,t;61)

= z1 + c1

23- 2 +(1/2)8
where c1 = log 2' - 2 + 2 O" + 2(1 - 1

Thus the lod score in this case, and in general, is simply the score appropriate to
random sampling plus a correction factor which is determined by the method of
selection. The factor c1 is exactly analogous to - e5 in the theory of u scores (Finney,
1940).

(2) The Z2 scoring type (AMatings 9 and 10)
Using the same notation as before, we find that

log f(y;01 g,t) Z2 + C2f(y;1/2 Ig~t)=Z2+c
4s - 2s - 38 + (3/2)'where c2 = log 45 - 2' - 35 + 2 (2 - 01)8 + 2 (1 + 0,)'

(3) The Z3 scoring type (Mating 13)

log f(y;O1 I g,t) - Z + c3*f&(; 1/2 g~t)
48 - 2(3)' + (9/4)'

g48 - 2(3)'+ 4 2(30-2O + 0D+ 2 (2 + 01-_D' + 4(2 + 01)'
. BOTH CHARACTERS SELECTED THROUGH THE CHILDREN, ONE COMPLETELY

(TRUNCATE SELECTION), THE OTHER INCOMPLETELY (ARBITRARY SELECTION).
PARENTAL GENOTYPES KNOWN, BOTH PARENTS TESTED. COMPLETE PENETRANCE,
NO NATURAL SELECTION

Let the character with arbitrary selection be denoted by g or G2, and let t de-
note the character with truncate selection. The family is ascertained through the
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G factor and then tested for the T factor, with rejection of families in which there
is not at least one t child. (If these families are not rejected, or if there is no domi-
nance in the T factor, see §9.) Occasionally the method of incomplete ascertainment
of the G factor may be known exactly, but the simplest and most reliable procedure
is to consider the distribution of the families with the G factor fixed, so that the
method of selection does not enter into the argument (Finney, 1940).

A. Dominance in the G factor (G,g type)
Let there be si children of type G and S2 of type g (s, + S2 = s). The distribution

of selected families is

f(y; 0 s1,s2,t) - f(Y; 6)

where P(sl,s2,t) is the probability measure of selected families of this class. Note
that s2 = 0 implies ascertainment of the G factor through the parents or uninforma-
tive children, hence the sl,s2 method of scoring is not appropriate unless s2 > 0 or
the viability of the G,g types is abnormal.
(1A) The zi scoring type (Mating 1)

P(s1,s2,t) = P(sl,s2) - P(s1,s2, b + d = 0)

P(sSs2) = k (s ) (1/2)81(1/2)82

P(sIs2, b + d = 0) = P(a = Si, c = S2) = k (s){1 ()8(1 2 )2
SI2~~\2 @)2 ( )

Therefore,

P(sl,s2,t) = k (s ) (1/2)8 1 - 81(1-0)82- 2(1 - 0)81 ,

where k is a selection factor dependent only on sI and S2 and

log f(Y;i1 sI s2t,t = -1 + elf(y;1/2 Sl,S2,t)
where

1=-l(1/2)5
el= log 1- l 6w'(1 - 0)82 - 8012(1 - o1 1

(2A) The Z2 scoring type (Mating 9)

log zf(1/2 s1,s2)t)-2 + e2fy12I s1,s2,t)
3811l - (1/2)8]

= log381 - (2 - oD81o02 (1 ± oi)81(1 -1)82
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(3A) The Z2 scoring type (M1ating 10)

log f(y;01 S'5i,."t) =Z2 + d2f(y;l j2 Sl,S2,t)
28 - (3/2)'

= log 2-_ (2 _D"(1 +f89)82-' (1 + 01)8(2 Al)
(4A) The Z3 scoring type (Mating 13)

log =f(YZSS2, 3 + e3f(y;l/2 Sl,S2,t)
3841 - (3/4)8]

e3 = log93-Si (3-20l + 02)8@102 (2-01)82 - (2 + 0 - 02)81(1 -_ + 02),2
- 4 (2 + 02)s(1 - 02)82.

B. Incomplete dominance in the G factor (G1,G2 type)
Rare "dominants" and a few characters lacking dominance (sicklemia, thalas-

semia) are sometimes selected incompletely in this way. This situation was not
considered by Finney (1940).
(1B) The z1 scoring type (Mating 3)
Let si be the number of G1 children, and S2 be the number of G1G2 children. Then

the probability ratio is the same as for type 1A above, and

log f(Y;01 SlS2,t +e) .f(y;1/2 S1,S2,t) =Z 1

(2B) The z1 scoring type (Mating 5)
If the family is selected through a G1G2 child, then there is random sampling for

the informative progeny, and the method of section 9 applies. If selection is through
an informative G. or G2 child, then

log f(Y;01 S1,S2,) + el,f(y;1/2 ISl,S2,t) =Z 1

where si is the number of G, children and S2 the number of G2 children.
(3B) The z2 scoring type (Mating 12)
Let there be s1 children of type GC and S2 children of type GlG2. The probability

ratio is the same as for 3A above, and

log f(Y;01 SlS2,t) Z+df(y;1/ l1,s2,t) = z2 + d2 I
(4B) The Z4 scoring type (Abating 15)
Let there be s1 children of type G1, S2 of type G1G2, and S3 of type G2

(S1 + S2 + S3 = s). Then

log f=(Yii S1zS2S3 4 + e4f(y;1/2 Sl,S2,S3,t)
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1 - (3/4)8
44 = log 1 - 0(1-- 01 + O1)s2[01(2 - - (1/2) 2+1(1 - 01 + O2)81+83

(1 + 20, - 2022 _1 [01(2 - oi)]s1(1 - 0l + 02)82(l _02)- 3

This completes the analysis of the matings in tables 4-8. These include all the
scoring types of Finney (1940), who used 3 essentially different scores, 2 derived
scores, 7 score corrections, and 12 essentially different information functions. For
the same matings, the probability ratio method requires only 5 scores and 7 correc-
tion factors. The development of the probability ratio scores is extremely simple
and may easily be extended to more complex cases, such as multiple allelism, un-
certain parental genotypes, and pedigree data. To facilitate numerical analysis of
the matings that have been treated so far, the scores for small families are given
in tables 10-18.

12. PARENTS OF UNKNOWN GENOTYPE, BOTH PARENTS TESTED. COMPLETE PENETRANCE,
NO NATURAL SELECTION

Parental heterozygosity for recessive factors can be established by the observa-
tion of recessive children, in the absence of which a family without pedigree informa-
tion is termed "doubtful". Information may still be extracted from these families,
provided that the population gene frequencies are known and that mating is at
random with respect to the doubtful locus. We have seen in §9 that when families
are selected through the parents for the test factor, and doubtful families are not
rejected, then no score correction is needed for families of known parental genotype
regardless of how the main character is selected. Matings doubtful for the main
character may also be analysed.

In connection with the doubtful families it will be convenient to introduce a few
new symbols. Let pt denote the frequency of the t gene and pg the frequency of the
g gene. Occasionally children will not be scorable for linkage, either because they
are uninformative or because they are incompletely tested. If these children are
tested for the doubtful character, they give information about the parental geno-
types and should enter into the present calculations. Let S be the number of scored
and unscored children which are tested for the doubtful character, in contradistinc-
tion to s, the number of children which are scored for linkage. As an example of the
general procedure, we shall develop scores for the "doubtful" analogues of the z1
scoring type.

(1) Families doubifulfor the t factor (Matings 1, 3, 5)
All children are of type T. The prior probabilities for homozygosity and hetero-

zygosity of the T parent are (1 - pt)2 and 2pt( -pt), and the conditional proba-
bilities for the children are

(1/2)8 and flIa(1 - G)c + ec(1 -0) }(1/2)5
respectively. Therefore,

lf(y;01) - l 2 - pet 28 -_ (l _ oc_- C(1 - 0)allog f(y01) log 2 58 - ,, -1)-I
f (y ;1/2) 2s-15 - ptl2s-15 - (1/2)15-11
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(2) Families doubtful for the g factor (Matings 1, 2, 4)

All children of type G. The probability ratio is the same as for the previous type,
except for the substitution of pg for pt and b for c.

f(y;a1) 2S-8 -p28 - O(, 0)b - o(1 -1)
f(yf;1/2) 28-8l- pg {-2S-9- (1/2)8-1l

(3) Families doubtful for the g and I factors (Mating 1)
All children of type GT. The GT parent may be GGTT, GgTT, GGTt, or GgTt,

only the last of which is informative. The lod score is

log f(Y;01) = log 2 (28 1-l)(p + pt) + p p8t2 - 2 + O7 + (1 -
f(y;1/2) 2s-1 - (28 1 - l)(pg + pt) + pgpt 28`1 - 2 + (1/2)8 11

The scoring system for the doubtful families may easily be extended to the ana-
logues of the Z2, Z3, and Z4 scoring types. However, the application of these scores
is quite tedious in the absence of ancillary tables for each of the common test factors
and, more important, the doubtful families have in practice been found to con-
tribute relatively little information on linkage. Finney found in one example that
scoring doubtful families for the ABO locus increased the available amount of in-
formation by only 5%, and he advised that "for a preliminary investigation of a
linkage, scoring may well be confined to the certain families" (Finney, 1940). This
policy, besides reducing the labor in linkage detection, has the further advantage of
making linkage tests independent of the mating system and the population gene
frequencies. Unless the data are extremely valuable, it seems best to score only
the certain families, using where necessary the correction factors of §§10-11.

13. ONE OR BOTH PARENTS NOT DIRECTLY TESTED. COMPLETE PENETRANCE, NO

NATURAL SELECTION

The extraction of information from untested parents by the method of u scores
involves considerable algebraic manipulation and heavy arithmetic. Finney (1941b)
has treated a few special cases and Smith (1953) has suggested an approximation
for use in large samples. Fortunately the probability ratio method is so simple
that ad hoc computation is always feasible, although the calculations are still tedious.
Suppose first that all ascertained families with untested parents are to be analysed,

subject to the condition that families are sampled through the parents for both
characters or that they are sampled through the parents for one character and the
parental genotypes for the other character are known. On these assumptions the
method of ascertainment does not affect the calculation, which consists in enu-
merating all parental genotypes which could give rise to F, the family in question,
and then computing from the population gene frequencies and the assumption of
random mating the prior probabilities of the mating types, say P(M1), P(1\12), ...

etc. The conditional probabilities, P(F Ml), P(F M12), ... etc. are then calcu-
lated. Finally, the score for linkage is computed as

log f(y;01) =log Ei P(Mb)P(F I Mi,01)
f(y;1/2) EiP(Mi)P(F Mi,1/2)

which of course is zero if none of the conditional probabilities is a function of 0.
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These calculations are straightforward but time-consuming, and the investigator
of human linkage would be well-advised to test both parents whenever possible.
Full information cannot be recovered from incomplete records, although large
families, whose scores are dominated by the conditional probabilities, are nearly as
informative as if both parents had been tested. If instances of incomplete parental
testing are not too common, no great amount of information will be lost by rejecting
families with incomplete parental records. Alternatively, the scoring of incomplete
records may be restricted to families whose parental genotypes can be inferred with
certainty. In this case the linkage test is independent of gene frequencies and the
mating structure of the population, considerable labor is saved, and at least some
large families with only one tested parent will be included in the analysis. The score
for the families whose parental genotypes are inferred is z + C, where z is the score
appropriate to complete selection with both parents tested and C is a correction
factor dependent on the method of sampling and inference. There are many special
cases for C, all of which are easily treated ad hoc by the elementary methods used
in §§1O-11.

14. NATURAL SELECTION AND INCOMPLETE PENETRANCE

Genetic main factors with incomplete penetrance or low viability may still be
used for linkage studies if we assume that the test factor is fully penetrant, viable,
sampled at random through the parents or through complete selection of affected
children, and that the viability and penetrance of the main factor are independent
of the test factor.
For example, suppose the main factor is fully penetrant but so subvital that many

affected progeny die before examination. On the above assumptions, it is still proper
to test linkage by the methods of §§9 and 11, and the probabilities of Type I and
Type II errors remain unaltered. Notice that no assumption need be made about
the constancy of viability among families, either in the detection or estimation of
linkage.

Again, suppose that the main gene is incompletely penetrant, with no assumptions
made about viability or ascertainment. We shall assume that the main factor is so
rare that all matings will be backcrosses if the main factor is a rare "dominant" or
intercrosses if the main factor is a rare recessive. Given the above conditions on the
test factor, the probability of a Type I error when the methods of §§9 and 11 are
used will not be changed, regardless of whether penetrance is variable or not, but
the power of the test will decrease very greatly when penetrance is low. In this case
estimation of the penetrance will improve the power of the test, without affecting
the probability of a Type I error.

In practice, the distinction between loose linkage to the main factor and linkage
to viability or penetrance modifiers may be difficult to make, and therefore only
tests of close linkage have much value when viability or penetrance is irregular.
Even with such tests the rigorous justification of the assumption that the test factor
does not influence the viability or penetrance of the main factor is extremely diffi-
cult, and may well be attempted only for tests which indicate a significant "linkage".
Proof that the main and test factors are distributed independently in the general
population, the absence of a correlation between the test phenotype of affected
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parents and affected progeny, constant penetrance, and homogeneity of the linkage
value give supporting evidence for the hypothesis of linkage, while contrary observa-
tions suggest alternative explanations. Knowledge of the exact method of ascertain-
ment is helpful in detecting irregularities, especially with rare recessive factors. All
these problems are particularly acute when the test factor is extremely complex, and
great difficulties have been encountered in attempts to distinguish linkage when
sex is used as the test factor (Harris, 1948; Mohr, 1954). Even with less fundamental
test traits, a significant "linkage" effect requires special scrutiny when the pene-
trance or viability of the main factor is low. If the test factor also behaves irregularly,
the difficulties in linkage detection are vastly increased.

15. THE COMBINATION OF DATA

In §§5-6 the properties of the sequential probability ratio test were illustrated
on the simplifying assumption that the data consist entirely of double backcross
sibships of size 2, and it was shown that for this case the sequential test is very
much superior to alternative procedures. In practice, linkage data in man comprise
a mixture of family sizes and mating types, the frequencies of which vary among
pairs of loci and are usually unspecified. We shall now show that this ignorance does
not affect the important properties of the sequential test.

Let k = 1, 2, *.-, denote a particular mating type and family size, fk(y;O) be
the conditional distribution for the kth type of data, and Pk be the prior probability
of this type of data. Consider only sampling procedures for which pk and fk(y;G)
are independent of the stage of sampling. Then clearly the distribution pkfk(y;O) is
of the stationary type treated by Wald and all the important results of his sequential
theory apply. In particular, it has been shown that of all tests with the same risk of
error (a, 0), the sequential probability ratio test requires on the average fewest
observations, and that the Type I and Type II risks are approximately

1-B
A-B

B(A - 1)
A-B

these approximations being very good when the excess of E z over the boundary
log A or log B is negligible. This condition is satisfied if E(z) and the standard
deviation o- of z are sufficiently small, as in practice they usually will be. In any
case the optimum character of the sequential test holds exactly (Wald and Wolfowitz,
1948).
Although the existence of a stationary distribution pkfk(y;O) is sufficient for the

proof of the above remarks, it is not necessary that the Pk be known to carry out the
test. For the Pk are independent of 0, and therefore the probability ratio

Pk fk(y ;O1)
pkfk(Y;00)

is identical with the ratio
fk(y;O1)
fk(y;0o)
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0 .10 .20 .30 .40 .50

e
FIG. 5. The power function P(O) for different types of data. A 1000, B .01, e1 .20.

Determination of the Pk is necessary only if it is desired to find the power function
and average sample number function of a sequential test, but this is of secondary
importance so long as there is some basis for the choice of a particular test and we

know that the sequential test on the average leads to a saving in the number of
observations.
To choose a sequential test, it is convenient to have a rough notion of the average

power of alternative tests. The power function depends on the distribution Pk,

but the risks (a, fl) do not, and this limits the possible fluctuation of the power
function. Figure 5 shows a typical power function for three different types of data.
The power function and the average power do not seem to be so highly variable as

to jeopardize the control over Type I errors demanded for the idealized case in §5.
In particular, it still seems appropriate to choose an unusually small value of a, of
the order of .001.
The choice of G, for a sequential test is largely determined by the average sample

number on the null hypothesis, since (1) for randomly chosen loci the null hypothesis
will usually be true and (2) the number of observations that can be tolerated is
not narrowly bounded, so that random excesses over the expected number will
usually not be a serious annoyance. A rough correspondence between expected
sample number and amount of information may be established as follows.
Let n be the number of families required to terminate the test in mixed data and

nk be the number of families required for the test in data entirely of the kth type.
Let E(z) denote the expected value of z in mixed data and E(zk) the expected value
of z in the kth type of data. Also let c be a fixed value of k. Then on the null hy-
pothesis

E(n)E(z) = a log A + (1 - a) log B = E(n0)E(z,)
and

E(nc) = E {E(n) LE(Zi i}

N

o'

If Mr
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TABLE 9.-THE EFFICIENCY OF DIFFERENT TYPES OF DATA IN DOUBLE BACKCROSS
SIB-PAIR EQUIVALENTS

61 ~~~~uscore
Scoring Type .05 .20 .40 information

A. Families of size s, phase unknown
z1,S = 2 1.0 1.0 1.0 1.0
z2, s= 2 .1 .1 .1 .2
Z3, S= 2 .1 .1 .1 .2
z1, s= 5 3.8 5.3 8.8 10.0
Z3, s= 5 .5 .5 .5 .8
z1, s= 10 9.7 14.7 33.1 45.0

B. Single progeny, phase known
double backcross 1.6 3.2 25.4 -

single backcross .5 1.0 8.5
double intercross, coupling, both factors dominant 1.0 1.8 12.3

where i = 1, 2,'2 , E(n) denotes successive observations from the distribution
pkfk(y;O). If we let c designate double backcross sibships of size 2, then the ratio
E(Zk)/E(z,) may be called the double backcross sib-pair equivalent on the null hy-
pothesis. It has the property that if E(n0) is the average number of double back-
cross sib-pairs required by a certain test when 0 = 0o = 1/2, then E(ne)E(ze)/E(zk)
is the average number of families of type k required for the same test, assuming
in both cases that the excess over the boundaries at the termination of the test can
be neglected. Furthermore, for small families E(zk)/E(zC) is of the same order as the
information weight k in Finney's (1940) system of u scores (table 9). It follows that
if S is the number of units of u score information that can be obtained with "reason-
able" effort, then S is an estimate of E E(Zk)/E(z,) and E(n,) also, and this cor-
respondence may serve as a rough guide' in the selection of a sequential test. If S
is about 10, 0, should be chosen to be .05, since E(n5) = 9 for 01 = .05. Similarly, if
S is about 70, 01 should be taken as .20, if S is as much as 350, 01 may be .30, and
only if S is about 6000 should 01 be .40. For linkage of two common test factors
(ABO, Rh, MN), S may be as much as 6000, and for two less common test factors
(Le, Lu, P, Fy blood groups), S may be 350. In most other cases S is probably
smaller than 100, and 01 should be chosen accordingly. If it turns out that S has
been considerably underestimated, a second test with a larger value of El will not
increase a beyond tolerable limits.
The restriction of the sampling procedure to stationary distributions has pro-

scribed a valid sampling method that in some respects seems desirable. All types of
data might be collected at the beginning of sampling and whenever linkage is sug-
gested, but when there is no suggestion of linkage it would seem economical to
investigate only highly informative families for which the double backcross sib-pair
equivalent is large. This makes Pk dependent on E z, but fk(y;0) is not affected
and the probability is still one that the procedure will eventually terminate. It is of
course essential that data be reported without regard for whether they indicate
linkage or not. Wald (1947) has shown that the postulated kind of dependence does
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TABLE 11
z2

cI d

0
0
1
0

2
1
0

0
0
1
0
01

0
2
1
0

0
1
0
2
1

0
3
2
1
0

0

1
0
0

0
0
0
1
0

0
1
0
1
2

0
0
0
1
0

0
1
0
1
2

0
0
1
0
1

2
0
1
2
3

0
0
0
1
0

01

.05

.0374

.1367

.0410

.1038

.2577

.1038

.7212

.0374

.1367

.2577

.1038

.2596

.0410

.2122

.1038

.0410

.7212

.0410

.0410

.3711

.5353

.3711

.7212

.2122

.7212

.7212

.1038
-.2596

.1038

.5353

.1898

.3608

.0035

.3231

.0492

1 0 - .1776
0 1 -.6838
2 0 -.0819
1 1 .0628
0 2 .4847

.10

.0298
-.1042

.0320

.0840

.2148

.0840

.4437

.0298
-.1042

.2148

.0840
-.1908
-.0320

.1754

.0840

-.0320
.4437

-.0320
-.0320

.3153

.4654

.3153

.4437

.1754

.4437

.4437

.0840
- .1908

.0840

.4654

.1559
- .2532
-.0022

.2715

.0170
-.0555
-.0177

.0492

.1335

.0492
-.1938

.0170
-.0555

.1335

.0492
-.0969
-.0177

.1072

.0492

-.0177
-.1938
-.0177
-.0177

.2041

.3181

.2041
-.1938

.1072
-.1938

-.1938
.0492

-.0969
.0492
.3181

.0940
-.1219

.0007

.1717
-.0442 -.0295

-.1362 1- .0732
-.4139 - .1768
-.0641 - .0355

.0519 .0315

.4166 .2775

.30 .40

.0077
-.0238
-.0078

.0226

.0645

.0226
-.0757

.0077
-.0238

.0645

.0226

.0404
- .0078

.0509

.0226

-.0078
-.0757
-.0078
- .0078

.1027

.1703

.1027
-.0757

.0509
-.0757

-.0757
.0226
.0404
.0226
.1703

.0441
-.0494
-.0001

.0843
-.0144

-0316
-.0681
- .0156

.0148

.1442

.0019
-.0058
-.0019

.0058

.0170

.0058
-.0177

.0019
-.0058

.0170

.0058
-.0098
-.0019

.0133

.0058

-.0019
-.0177
-.0019
-.0019

.0280

.0492

.0280
-.0177

.0133
-.0177

-.0177
.0058

-.0098
.0058
.0492

.0114
-.0118

0
.0226

-.0038

-.0078
-.0158
-.0039

.0038

.0406

s

2

3

4

a

2
1
1
1
0

0
0
0
0
0

3
2
2
2
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

4
3
3
3

b

0
1
0
0
2

1
1
0
0
0

0
1
0
0
2

1
1
0
0
0

3
2
2
1
1

1
0
0
0
0

0
1
0
0

2 12

2
2
2
2
2

1

0
0
0
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TABLE 11.-Continued

b c d

.05 .10 .20 .30 .40

1 3 0 0 .3804 .3311 .2245 .1178 .0332
1 2 1 0 .2167 .1828 .1158 .0567 .0151
1 2 0 1 -.8579 - .5479 -.2493 -.0995 -.0236
1 1 2 0 .0628 .0519 .0315 .0148 .0038
1 1 1 1 - .7622 -.4757 -.2115 -.0835 -.0197

1 1 0 2 -.6174 -.3597 -.1446 -.0532 -.0120
1 0 3 0 -.0035 -.0022 -.0007 -.0001 0
1 0 2 1 -.1776 -.1362 - .0732 -.0316 -.0078
1 0 1 2 .2167 .1828 .1158 .0567 .0151
1 0 0 3 .6492 .5678 .3950 .2171 .0647

0 4 0 0 .8140 .7201 .5171 .2979 .0940
0 3 1 0 .6492 .5678 .3950 .2171 .0647
0 3 0 1 - .4636 -.2289 -.0603 -.0113 -.0007
0 2 2 0 .4847 .4166 .2775 .1442 .0406
0 2 1 1 -.6174 -.3597 -.1446 -.0532 -.0120

0 2 0 2 -1.4425 -.8874 -.3876 -.1514 -.0355
0 1 3 0 .3231 .2715 .1717 .0843 .0226
0 1 2 1 -.6838 -.4139 -.1768 -.0681 -.0158
0 1 1 2 - .8579 -.5479 -.2493 -.0995 -.0236
0 1 0 3 - .4636 -.2289 - .0603 -.0113 -.0007

0 0 4 0 .1898 .1559 .0940 .0441 .0114
0 0 3 1 -.3608 -.2532 -.1219 -.0494 -.0118
0 0 2 2 -.0492 - .0442 -.0295 -.0144 - .0038
0 0 1 3 .3804 .3311 .2245 .1178 .0332
0 0 0 4 .8140 .7201 .5171 .2979 .0940

5 5 0 0 0 .2879 .2396 .1486 .0716 .0189
4 1 0 0 -.4307 -.2859 -.1294 -.0507 -.0118
4 0 1 0 .0628 .0519 .0315 .0148 .0038
4 0 0 1 .4354 .3703 .2407 .1219 .0335
3 2 0 0 -.2006 -.1678 -.1004 -.0458 - .0116

3 1 1 0 -.3006 -.2229 - .1146 - .0482 -.0117
3 1 0 1 -.6174 -.3597 - .1446 -.0532 -.0120
3 0 2 0 -.0819 -.0641 - .0355 -.0156 -.0039
3 0 1 1 .1712 .1434 .0895 .0431 .0114
3 0 0 2 .5985 .5185 .3527 .1886 .0546

2 3 0 0 .2256 .1972 .1325 .0679 .0187
2 2 1 0 .0628 .0519 .0315 .0148 .0038
2 2 0 1 -.9809 - .6345 - .2907 -.1161 -.0275
2 1 2 0 -.0819 - .0641 - .0355 -.0156 -.0039
2 1 1 1 -.7622 -.4757 -.2115 -.0835 -.0197
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TABLE 1 1.-Concluded

a b I c I d

0

3
2
1
0

0

1
0

2
1

0

3
2
1
0

4
3
2
1
0

0

1
0

2
1

0

3
2
1
0

4
3
2
1
0

2
0

1
2
3

0

0

1
0

1

2
0

1
2
3

0

1
2
3
4

0

0

1
0

91

.05 . 10

-.5091
-.0819
-.0819

.3301

.7631

.6591

.4943
-.6174

.3301

.7622

-1.4425
.1712
.7622

-.7622
-.3502

.0628
-.3006

.0628

.4943

.9279

1.0927
.9279

- .1860
.7631

1 -.3502

2
0

1
2
3

0

1
2
3
4

-1.4425
.5985

-.5091
-1.4425
-1.4425

.4354
-.6174
-.9809
-.6174
-.1860

5 .2879

4 1 -.4307
3 2 -.2006
2 3 .2256
1 4 .6591
0 5 1.0927

-.2683
.0641

-.0641
.2832
.6703

.5855

.4333
-.3597

.2832
-.4757

-.8874
.1434

-.4757
-.4757
-.1284

.0519
-.2229

.0519

.4333

.8228

.9753

.8228

.0217

.6703
-.1284

-.8874
.5185

-.2683
-.8874
-.8874

.3703
-.3597
-.6345
-.3597

.0217

.20

- .0866
- .0355
- .0355

.1864

.4727

.4211

.3003
-.1446

.1864
-.2115

-.3876
.0895

-.2115
-.2115

.0103

.0315
-.1146

.0315

.3003

.5958

.7200

.5958

.1242

.4727

.0103

-.3876
.3527

-.0866
-.3876
-.3876

.2407
-.1446
-.2907
-.1446

.1242

.30 .40

-.0248
-.0156
-.0156

.0949

.2656

.2401

.1625
-.0532

.0949
-.0835

-.1514
.0431

-.0835
-.0835

.0269

.0148
-.0482

.0148

.1625

.3489

.4358

.3489

.0945

.2656

.0269

-.1514
.1886

-.0248
-.1514
-.1514

.1219

.0532
-.1161
-.0532

.0945

-.0044
-.0039
-.0039

.0261

.0814

.0741

.0473
-.0120

.0261
-.0197

-.0355
.0114

-.0197
-.0197

.0103

.0038
-.0117

.0038

.0473

.1130

.1486

.1130

.0315

.0814

.0103

-.0355
.0546

-.0044
.0355

-.0355

.0335
-.0120
-.0275
-.0120

.0315

.2396 .1486 .0716 .0189

.2859 - .1294 - .0507 - .0018

.1678 - .1004 - .0458 - .0116

.1972 .1325 .0679 .0187

.5855 .4211 .2401 .0741

.9753 .7200 .4358 .1486

s

2
2
2
2
2

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0

0

0

0

0

0

1
0
0
0
0

4
3
3
2
2

2
1
1
1
1

0
0
0
0
0

5
4
4
3
3

3
2
2
2
2

1
1
1
1
1

0
0
0
0
0
0
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TABLE 12

b+c

0

1
0

2
1
0

0

1
0

2
1

0

3
2
1
0

0

1
0

2
1

0

3
2
1
0

4
3
2
1
0

d

0

0

1
0

1
2

0

0

1
0

1

2
0

1
2
3

0

0

1
0

1

2
0

1
2
3

0

1
2
3
4

Ol

.03 .10 .20 .30

.0120
-.0382

.0979

.0979
-.6174

.5154

.0373
-.0740

.1993

.0542

.5782

.6252

.2076
-.7622
-.3502
1.0706

.0763
-.1064

.3034

.0108
-.5261

.7353

.1632
-.7877
-.2462
1.1811

.3187
-.6937
-1.0746

.1856
1.6280

0 0 .1286
1 0 -.1343
0 1 .4092
2 0 -.0322
1 1 -.4620

0 2 .8456
3 0 .1189
2 1 -.8075
1 2 -.1404
0 3 1.2917

.0090
-.0281

.0747

.0747
-.3597

.4297

.0277
-.0528

.1543

.0386

.3270

.5235

.1680
-.4757
-.1284

.9308

.0568
-.0732

.2378

.0034
-.2848

.6180

.1298
-.4859
-.0439
1.0270

.2657
-.4465
-.5775

.3389
1.4403

.0961
-.0884

.3245
-.0307
-.2335

.7130

.0920
-.4900

.0435
1.1233

.0045
-.0139

.0392

.0392
-.1446

.2671

.0139
-.0249

.0824

.0175
-.1244

.3273

.0984
-.2115

.0103

.6361

.0283
-.0325

.1293
-.0026
-.0995

.3891

.0727
-.2092

.0608

.7031

.1676
-.2188
-.1905

.3347
1.0343

.0018
- .0056

.0164

.0164
- .0532

.1289

.0056
- .0096

.0346

.0063
- .0435

.1582

.0451
- .0835

.0269

.3405

.0114
- .0121

.0547
- .0025
-.0319

.1888

.0317
- .0801

.0509

.3775

.0831
- .0938
- .0539

.2058

.5958

.0480 .0191
-.0365 - .0128

.1795 .0766
-.0208 - .0100
-.0698 - .0185

.4522 .2206

.0478 .0193
-.2029 - .0750

.1142 .0764

.7706 .4152

S

2

3

4

S

a

2
1
1

0

0

0

3
2
2
1
1

1

0

0

0

0

4

3

3

2

2

2

1

1

1

1

0

0

0

0

0

5

4

4

3

3

3

2

2

2

2

.40

.0004
-.0013

.0039

.0039
-.0120

.0341

.0013
-.0022

.0083

.0014
-.0094

.0417

.0115
-.0197

.0103

.0984

.0026
-.0027

.0131
-.0008

.0065

.0498

.0078
-.0185

.0166

.1093

.0225
-.0232
-.0092

.0640

.1880

.0044
-.0027

.0183
-.0026
- .0031

.0582

.0044
-.0169

.0233

.1206
I-- III
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TABLE 12.-Continued

d
.05 .10 .20 .30

0 .2741
1 -.7331
2 -1.0107
3 .2959
4 1.7386

0 .4301
1 -.5931
2 -1.3547
3 -.6897
4 .7420
5 2.1855

0 .1932
0 -.1561
1 .5165
0 -.0746
1 - .3875

2 .9559
0 .0747
1 -.8201
2 -.0331
3 1.4023

0 .2296
1 -.7718
2 -.9364
3 .4062
4 1.8492

0 .3855
1 -.6342
2 -1.3672
3 -.5826
4 .8525

5 2.2961
0 .5418
1 -.4891
2 -1.3191
3 -1.4833

4 -.1435
5 1.2994
6 2.7430

.2268
-.4741
-.5235

.4340
1.5367

.3649
-.3728
-.7977
-.2365

.8444
1.9507

.1451
-.0971

.4135
-.0633
-.1738

.8084

.0545
-.4867

.1330
1.2196

.1882
-.4999
-.4615

.5295
1.6332

.3257
-.4049
-.7915
-.1466

.9408

.1397
-.2286
-.1555

.3987
1.1031

.2422
-. 1905
-.3166

.0540

.7200
1.4400

.0728
-.0364

.2327
-.0368
-.0356

.5163

.0240
-.1923

.1701

.8383

.1123
-.2360
-.1163

.4636
1.1720

.2128
-.2072
-.3002

.1117

.7880

2.0472 1.5093
.4651 .3200

-.2888 -.1441
- .8168 - .3702

I -.7448 -.1870

.2505 .4115
1.3544 1.1224
2.4612 1.8476

.0671

.0958
-.0361

.2396

.6366

.1278
-.0879
-.1123

.0851

.4434

.8717

.0289
-.0117

.1002
-.0160

.0031

.2536

.0078

.0681

.1034

.4535

.0518

.0964
-.0165

.2744

.6778

.1098
-.0942
-.1008

.1147

.4827

.40

.0177
-.0233
-.0042

.0737

.2015

.0366
-.0228
-.0244

.0334

.1445

.2972

.0066
-.0023

.0240
-.0039

.0008

.0671

.0015
-.0148

.0305

.1322

.0132
-.0231

.0012

.0838

.2154

.0308
-.0242
-.0208

.0419

.1571

.9143 .3129

.1776 .0536
-.0693 - .0188
-.1488 -.0353
-.0182 .0070

.2985 .1043

.7109 .2465
1.1568 .4212

S

6

a

1
1
1

0
0
0
0
0
0

6
5
5
4
4

4
3
3
3
3

2
2
2
2
2

1
1
1
1
1

1
0
0
0
0

b+c

4
3
2
1
0

5
4
3
2
1
0

0
1
0
2
1

0
3
2
1
0

4
3
2
1
0

5
4
3
2
1

0
6
5
4
3

0 2
0 11
0 0
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TABLE 12.--Concluded

d

0

0

1
0

1

2
0

1
2
3

.05 I- .10 I .20

.2684
-.1703

.6247
- .1162
- .3043

1.0663
.0306

- .8237
.0750

1.5129

0 .1852
1 -.8095
2 -.8534
3 .5166
4 1.9597

0 .3409
1 -.6751
2 -1.3708
3 -.4745
4 .9631

5 2.4067
0 .4970
1 -.5303
2 -1.3565
3 -1.4009

4 -.0331
5 1.4100
6 2.8536
0 .6537
1 -.3846

2 -1.2229
3 -1.9107
4 -1.0240
5 .4134
6 1.8569
7 3.3005

s

7

Oi
a

7

6
6

5
4
4
4
4

3
3
3
3
3

2
2
2
2
2

2
1
1
1
1

1

1

1

0

0

b+c

0

1

0

2

1

0

3
2
1
0

4i
3

21
1
0

Sl
4
3
2
1

0

6
5
41
3

21
1i
0

7
6i

5

4
3
21
11

.2032
- .0981

.5044
- .0939
-.1068

.9041

.0175
- .4752

.2243
1.3160

.1497
- .5233
- .3925

.6252
1.7297

.2866
- .4365
- .7769
- .0551
1.0372

2.1437
.4254

- .3219
- .8385
- .6749

.3463
1.4509
2.5577
.5660

- .2024

- .7576
-1.0674
- .3345

.7584
1.8649
2.9718

.1028
-.0319

.2884
-.0504

.0029

.5814

.0014
-.1774

.2281

.9064

.0855
-.2406
-.0732

.5293
1.2410

.1838
-.2225
-.2793
.1712
.8563

1.5786
.2896

-.1642
-.3696
-.1409

.4777
1.1914
1.9170
.4004

-.0886

-.3720
-.3649

.1158

.8062
1.5291
2.2557

.30

.0408
-.0087

.1255
-.0206

.0141

.2876
-.0025
-.0594

.1318

.4925

.0374
-.0954

.0048

.3101

.7193

.0925
-.0994
-.0875

.1455

.5224

.9571

.1581
-.0790
-.1432

.0063

.3355

.7528
1.2003
.2315

-.0413

-.1660
-.1010

.1639

.5536

.9923
1.4460

.40

.0093
-.0015

.0302
-.0048

.0051

.0764
-.0011
-.0124

.0380

.1442

.0091
-.0223

.0070

.0942

.2296

.0253
-.0252
-.0167

.0508

.1700

.3287

.0469
-.0213
-.0331

.0142

.1158

.2614

.4384

.0732
-.0112

-.0422
-.0153

.0677

.1985

.3651

.5559
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SEQUENTIAL TESTS

not affect the validity of a sequential test, but his proof of the optimum character
of the sequential test does not cover dependent observations. I suspect, but have
not been able to prove, that the sequential probability ratio test is optimum for
this class of dependence also.
The ease and exactness with which probability ratio scores may be combined is

particularly important when the data are of mixed known and unknown phase,
since the alternative u score theory provides only a rough approximation in small
samples (Finney, 1943; Smith, 1953). This is a critical point, not only for human
pedigrees, but especially in laboratory vertebrates where linkage studies are of
secondary interest and the material on any particular pair of loci is usually hetero-
geneous and small.

16. INSTRUCTIONS FOR ANALYSIS

Although the simplicity of the sequential probability ratio test allows the in-
vestigator to modify his methods to fit particular situations, it may be useful to
set down here instructions for the routine case of unrelated families, tested parents,
known parental genotypes, and unknown phase.

Step 1. Define the method of selection. This comprehends both ascertainment of
families and rejection of some kinds of ascertained families. Usually, families with
untested parents or of doubtful mating type will be rejected; otherwise, cf. §§12-13.
For each factor selection may be complete, truncate, or arbitrary (§7). With respect
to the two. factors in a linkage test, there are three important methods of selection:

(i) Complete selection of one or both factors.
(ii) Truncate selection of both factors.
(iii) Arbitrary selection of one factor (G), truncate selection of the other (T).
Step 2. Choose the alternative hypothesis (cf. §15). If the amount of data that

can be obtained with "reasonable" effort is likely to be small, choose El = .05 or
.10; if a moderately large amount of data is hoped for, choose 01 = .20 or .30; if an
extraordinarily large amount is anticipated, take Al = .40. Usually, log B = -2
and log A = 3 are appropriate choices for the other parameters of the test.

Step 3. Classify the mating type of each family according to tables 4-8, and
distribute the children among classes a, b, c, d, *-- . In these tables, G1, G2 and
T1, T2 denote factors without dominance or rare "dominants", while G, g and T, t
are factors showing simple dominant-recessive relationships.

Step 4. Determine the score for each family from tables 10-18, or compute directly,
using common logarithms. The following outline may be helpful in performing the
above steps.

Classification of matings, methods of selection, and scores (z)
I. Double backcross, and single backcross with no dominance in the inter-

cross factor.
(i) Complete selection of either factor Z1

(ii) Truncate selection of both factors Zi + cl
(iii) Arbitrary-truncate selection Zi + el
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TABLE 18.-LOD SCORES FOR INDIVIDUAL PROGENY WHEN THE PARENTAL PHASE IS KNOWN

f (y; el)

5 ' .10 .20 .30 .40

20, -1.0000 -.6990 -.3979 -.2218 -.0969
2(1 - 0,) .2788 .2553 .2041 .1461 .0792
2(2 - 0,)/3 .1139 .1027 .0792 .0544 .0280
2(1 + 0,)/3 1549 - .1347 - .0969 - .0621 - .0300
4(3 - 20, + 01)/9 .1106 .0965 .0694 .0440 .0207
4(2 + 0, - al/)!9 .0410 - .0320 -.0177 - .0078 -.0019
4(1 - 0a + 02)/3 .1038 .0840 .0492 .0226 .0058
4(2 + 0;X'9 -.0506 - .0490 -.0426 -.0320 -.0177
2(1 + 20, - 202)/3 -.1367 - . 1042 - .0555 - .0238 - .0058
2(1 - 20, + 22) .2577 .2148 .1335 .0645 .0170

II. Single backcross with dominance in the intercross factor.
(i) Complete selection of either factor Z2
(ii) Truncate selection of both factors Z2 + C2
(iii) Arbitrary selection of intercross factor, truncate selection of back- Z2 + e2

cross factor
(iv) Arbitrary selection of backcross factor, truncate selection of inter- Z2 + d2

cross factor
III. Double intercross with dominance in both factors

(i) Complete selection of either factor Z3
(ii) Truncate selection of both factors Z3 + C3
(iii) Arbitrary-truncate selection z3 + e3

IV. Double intercross with dominance in one factor
(i) Complete selection of either factor Z4

(ii) Arbitrary selection of factor with no dominance, truncate selection Z4 + e4
of dominant factor

V. Double intercross with no dominance in either factor
(i) Complete selection of either factor Zs

Step 5. Accumulate the family scores (z). If E z < log B, conclude that the
frequency of recombination 0 is significantly greater than 01 on the assumptions of
§1. If Y z > log A, conclude that 0 is significantly less than 1/2. Review the data
and assurfptions before deciding that true linkage is present. If log B < E z <
log A, suspend judgment about linkage until further data lead to a decision. More
data can also be used to estimate 0, after linkage has been detected, or to make a
further test for linkage in the range 01 < 0 < 1/2, if that seems advisable.
The following examples illustrate the scoring procedure.
Case 1. A mating of type GT X gt gives 2GT, 2Gt, and lgt progeny. This is a double

backcross (mating 1) with s = 5, a + d = 3. The score for complete selection is
Zi (table 10). For truncate selection of both factors, add the correction factor cl
(table 13), and for truncate selection of the T factor but arbitrary selection of the'
G factor (which shows 4G: lg) add el with s1 = 4, s, = 1 (table 14). For O1 = .20,
we find z1 = -.3876, z1 + cl =- .3895, and z1 + e1 = -.3829.
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Case 2. A mating of type GT X Gt gives 5GT, 2gT, 3Gt, and lgt progeny. This is
a single backcross (mating 9) with s = 11, a = 5, b = 2, c = 3, and d = 1. Families
of this size are not given in table 11, but the score may quickly be obtained by
factoring the expression for Z2 which is

10

Z2 = log 8 [(2 -_ 1)5 (1 + O1)3(i -_ 1) + (1 + 01)5 (1 - 0D2(2 - 01)3O1]
= 3 log [2(2 - 01)/3] + 3 log [2(1 + J)/3] + log 20, + log 2(1 - 0)

22
+ log 01[(2-0)201 + (1 + O1)2(1-_1)].

The first four terms correspond to progeny of known parental phase (table 18),
the last term to a single backcross family with s = 3, a = 2, b = 1, c = d = 0.
For 01 = .20, we find

Z2 = 3(.0792) + 3(-.0969) + (-.3979) + .2041 + (-.0969) = -.3438.

The corresponding scores for incomplete selection are z2 + c2 = -.3438 and
Z2 + e2 = -.3439. Here, as is usual in large families, the corrections for incomplete
selection are negligible.

17. SUMMARY

The sequential probability ratio test for linkage detection in man is simple, exact
and efficient. The basic assumptions of the linkage test are discussed, and criteria
are developed for the choice of parameters in the sequential test. For the case of
double backcross sib-pairs, the sequential tests considered here require less than
1/3 as many observations for a given risk of error as the Fisher-Finney u score
method and about 1/5 as many observations as the Haldane-Smith nonsequential
probability ratio test. Formulae for "lod" scores are given for a variety of mating
types and methods of selection, and the research worker should have no difficulty
extending the formulae to novel cases as they arise. The optimum property of the
sequential probability ratio test holds for mixed data, the combination of which is
easy and exact. Examples and tables of scores are given for the most important
mating types.

The work for this paper was done under the direction of Dr. J. F. Crow, to whom the author is
indebted for many stimulating discussions and constant encouragement. Drs. E. R. Immel, W. J.
Schull, and C. A. B. Smith read the preliminary manuscript and offered helpful comments. Thanks
are also due to the Numerical Analysis Laboratory of the University of Wisconsin, and especially
to Mr. William Graebel, for assistance in computing the tables of linkage scores.

REFERENCES

BAILEY, N. T. J. 1951. A classification of methods of ascertainment and analysis in estimating the
frequencies of recessives in man. Ann. Eugen. 16: 223-225.

BERNSTEIN, F. 1931. Zur Grundlegung der Chromosomentheorie der Vererbung beim Menschen mit
besondere Beriicksichtung der Blutgruppen. Z. indukt. Abstamm. u. VererbLehre 57: 113-138.

BRIDGES, C. B., AND K. S. BREHME 1944. The mutants of Drosophila melanogaster. Carnegie Inst.
Wash. Publ. 552.

317



318 NEWTON E. MORTON

BROSS, I. 1952. Sequential medical plans. Biometrics 8: 188-205.
CARTER, T. C. 1955. The estimation of total genetical map lengths from linkage test data. J. Gener.

53: 21-28.
CREW, F. A. E., AND P. CH. KOLLER 1932. The sex incidence of chiasma frequency and genetical

crossing-over in the mouse. J. Genet. 26: 359-384.
FINNEY, D. J. 1940. The detection of linkage. Ann. Eugen. 10: 171-214.
FINNEY, D. J. 1941a. The detection of linkage. II: Further mating types; scoring of Boyd's data.

Ann. Eugen. 11: 10-30.
FINNEY, D. J. 1941b. The detection of linkage. III: Incomplete parental testing. Ann. Eugen. 11:

115-135.
FINNEY, D. J. 1942. The detection of linkage. VI: The loss of information from incompleteness of

parental testing. Ann. Eugen. 11: 233-242.
FINNEY, D. J. 1943. The detection of linkage. VII: Combination of data from matings of known and

unknown phase. Ann. Eugen. 12: 31-43.
FISHER, R. A. 1935. The detection of linkage with "dominant" abnormalities. Ann. Eugen. 6:

187-201.
HALDANE, J. B. S. 1934. Methods for the detection of autosomal linkage in man. Ann. Eugen. 6:

26-65.
HALDANE, J. B. S. 1946. The cumulants of the distribution of Fisher's "uij" and "u31" scores used in

the detection and estimation of linkage in man. Ann. Eugen. 13: 122-134.
HALDANE, J. B. S., AND C. A. B. SEITH 1947. A new estimate of the linkage between the genes for

colour-blindness and haemophilia in man. Ann. Eugen. 14: 10-31.
HARRIS, H. 1948. On sex limitation in human genetics. Eugen. Rev. 40: 70-76.
HOGBEN, L. 1934. The detection of linkage in human families. Proc. Roy. Soc. B 114: 340-363.
KOSAMBI, D. D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12:

172-175.
MOHR, J. 1954. A study of linkage in man. Op. Dom. Biol. Hered. Hum. Univ. Hafn. 33: 1-119.
NEEL, J. V. 1949. The detection of the genetic carriers of hereditary disease. Amer. J. Hum. Genet.

1: 19-36.
PENROSE, L. S. 1953. The general purpose sib-pair linkage test. Ann. Eugen. 18: 120-124.
RHOADES, M. M. 1950. Meiosis in maize. J. Hered. 41: 59-70.
SLIZYNSKI, B. M. 1949. A preliminary pachytene chromosome map of the house mouse. J. Genet. 49:

242-245.
SMITH, C. A. B. 1953. The detection of linkage in human genetics. J. Roy. Stat. Soc. B 15: 153-192.
WALD, A. 1947. Sequential Analysis. New York: Wiley.
WALD, A., AND J. WOLFOWITZ. 1948. Optimum character of the sequential probability ratio test.

Ann. .M.athi. Stat. 19: 326-339.


