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Summary 
The effects ofinterleukin 7 (IL-7) on the growth and differentiation of murine B cell p~ogenitors 
has been well characterized using in vitro culture methods. We have investigated the role of 
IL-7 in vivo using a monoclonal antibody that neutralizes IL-7. We find that treatment of mice 
with this antibody completely inhibits the development of B cell progenitors from the pro-B 
cell stage forward. We also provide evidence that all peripheral B cells, including those of the 
B-1 and conventional lineages, are derived from IL-7-dependent precursors. The results are consistent 
with the rapid turnover of B cell progenitors in the marrow, but a slow turnover of mature 
B cells in the periphery. In addition to effects on B cell development, anti-IL-7 treatment substantially 
reduced thymus cellularity, affecting all major thymic subpopulations. 

I n the adult mouse, B lymphocytes develop from progen- 
itor cells in the bone marrow. This development proceeds 

in an ordered fashion and can be characterized by the sequen- 
tial acquisition of Ig gene rearrangements and cell surface 
markers (1, 2). The principal marker of the B lineage in mu- 
rine bone marrow is the CD45R isoform identified by the 
6B2 mAb and is designated B220 (3). The earliest cells com- 
mitted to the B lineage, however, are B220- (4). A number 
of other cell surface antigens have been described whose ex- 
pression is characteristic of particular stages in the sequence 
orb cell development (1) which culminates in the expression 
of functional surface IgM. 

The early development of B cells in the marrow is depen- 
dent on stromal cells and is mediated by cell contact and 
secreted cytokines (5). The role of cytokines in the develop- 
ment of B lymphocytes has been characterized primarily using 
in vitro methods in which particular cytokines such as IL-7 
(6), mast cell growth factor (kit ligand) (7) or its antagonist 
(8), or insulin-like growth factor 1 (9) can be shown to regu- 
late the proliferation of B cell progenitors. In vitro data sug- 
gest that as Ig genes rearrange, B cell progenitors progress 
from a stage in which they are stromal cell dependent and 
IL-7 independent to a stage in which they require IL-7 (10, 
11). Very little information has been available on the actual 
role of these molecules in vivo, although treatment of normal 
mice with recombinant IL-7 has been shown to greatly aug- 
ment B lymphopoiesis (12). 

The extent to which the B cells in the peripheral lymphoid 

organs are derived from IL-7-dependent precursors remains 
unclear. Whereas pre-B cells in the marrow turn over very 
rapidly, the rate at which cells turn over in the periphery 
appears to be much slower. This view is based on studies 
using bromodeoxyuridine administration (13) which indicate 
that the majority of peripheral B cells are long-lived. A small 
proportion of peripheral B cells turns over more rapidly and 
these are presumably replaced by newly developed marrow- 
derived immature cells. B cells of the B-1 lineage, found 
primarily in the peritoneum, self-renew in the adult and are 
derived from immature progenitors only during fetal devel- 
opment (14-17). The role of IL-7 in the development of this 
B cell lineage is completely unknown. 

IL-7 also has been shown to stimulate the proliferation of 
murine (18, 19) and human mature T lymphocytes (20), and 
thymocytes (21). IL-7 is produced by thymic stromal cells 
(6) as well as bone marrow-derived stromal cells, and so it 
might be expected that T cell precursors would require IL-7 
at some stage of development. 

We have generated an mAb which neutralizes murine IL-7. 
In the current study, mice were treated with this antibody 
in order to determine to what extent B cell development was 
dependent on IL-7 and at what stage early progenitors began 
to require IL-7. In addition, thymocytes and peripheral lym- 
phocytes were studied for the effects of in vivo treatment with 
anti-IL-7. We found that this treatment manifested profound 
inhibitory effects on B and T lymphopoiesis. 
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Materials and Methods 

Mice. All experiments used BALB/cByJ female mice between 
8 and 10 wk of age (the Jackson Laboratory, Bar Harbor, ME). 
Timed pregnant BALB/cByJ mice were also obtained from the 
Jackson Laboratory. 

mAbsforln Vivo Treatment. A routine IgG2b mAb was gener- 
ated against human and mouse Ib7 by subcutaneous immuniza- 
tion of BALB/c mice with 10/~g of Escherichia coil-derived recom- 
binant human Ib7 in CFA. Immunized mice were boosted 
intravenously with antigen in saline 3 d before fusion of the im- 
mune spleen cells with P3X63Ag8.653 myeloma cells (American 
Type Culture Collection, Rockville, MD). Hybridomas were cloned 
in HAT medium and selected for binding to 12sI-IL-7 (murine and 
human). The M25 mAb was found to bind and neutralize both 
human and routine Ib7 in vitro. The activity of the antibody against 
Ib7 was measured using the 2B murine pre-B cell clone (22) which 
is IL-7 dependent. Inclusion of 10 #g/ml of M25 in cultures of 
2B cells resulted in '~50% inhibition of cellular proliferation in- 
duced by 10 ng/ml of murine II.,7. The M25 mAb was approxi- 
mately fourfold more inhibitory for the activity of human IL-7 than 
murine Ib7. In all experiments, control mice were treated with 
an isorype-matched (IgG2b) mAb. Large scale preparations of both 
the M25 and control antibodies were generated as culture superna- 
tants and purified on protein A affinity columns. All antibody prepa- 
rations were tested and found to contain <10 pg of endotoxin per 
mg of antibody. 

Mice were also treated in some experiments with a mixture of 
two murine monoclonal alloantibodies to murine IgD of the a al- 
lotype. These were H~a/1, an IgG2b, and FF1-4D5, an IgG2a 
(23). Mice were injected intravenously in the retroorbital sinus with 
100/~g each of the anti-IgD antibodies, once at the initiation of 
the experiment. This antibody treatment activates the immune 
system similarly to the injection of heterologous anti-IgD poly- 
donal antibodies (24, 25), and results in the depletion of most pe- 
ripheral IgM + B cells (data not shown) as previously reported for 
anti-IgD polyclonal antibodies (26, 27). 

mAb Conjugates for Flow Cytometry. The following mAbs were 
used for the dissection of murine B and T cell subsets: 6B2, rat 
IgG2a anti-B220; b-7-6, rat IgG1 anti-IgM; BP-1, mouse IgG2a 
anti-metallopeptidase (kindly supplied by Dr. Max Cooper, Univer- 
sity of Alabama, Birmingham, AL); M1/69, rat IgG2b anti-heat 
stable antigen; $7, rat IgG2a anti-CD43; GK1.5, rat IgG2b anti- 
CD4; and 53-6.72, rat IgG2a anti-CD8. Polyclonal goat anti-IgD 
(~ chain specific) was prepared as previously described (27). For 
four-color analysis, a Texas red goat anti-IgM (# chain specific) prep- 
aration was used (Southern Biotechnology Associates, Birmingham, 
AL). Biotinylated mAbs were developed with PE-Streptavidin 
(Becton Dickinson & Co., Mountain View, CA) as a second step. 
The rat mAbs were semi-purified from serum-free supernatants by 
ammonium sulfate precipitation. The BP-1 antibody was purified 
from ascites using affinity chromatography on a protein A column. 
The various antibodies were biotin and fluorescein conjugated using 
standard protocols. Antibodies were conjugated with Cyanine 5.18 
dye, (generously provided by Dr. Alan Waggoner, Carnegie-Mellon 
University, Pittsburgh, PA) as previously described (28). 

Flow Cytometry. All tissues were stained with multiple mAbs 
simultaneously in the presence of 5% normal rat serum and 50% 
of a supernatant of the 2.4G2 anti-F~RII hybridoma. Stained cells 
were analyzed using a FACStar ptus (Becton Dickinson & Co., San 
Jose, CA) equipped with filters for four-color immunofluorescence. 
In all experiments, the data were gated on small cells by forward 

and 90 ~ light scatter. The data were analyzed using Reproman (True 
Facts Software, Seattle, WA). 

Colony Assays. Bone marrow cells from treated mice were cul- 
tured at 5 x 10 ~ cells/0.5 ml in 16-mm tissue culture wells in 
Super McCoy's medium containing FCS, 0.13% agarose, and ei- 
ther 25 ng/ml of IL,7 (29) or 20 ng/ml of GM-CSF. Colonies were 
enumerated on day 7. 

Results  

The M25 anti-Ib7 antibody was tested for its effects on 
B lymphopoiesis in vivo. Adult BALB/c mice were injected 
intraperitoneaUy with 3 mg of M25 or isotype control mAb 
every third day for 10 d. Bone marrow cells were removed 
from femurs and tibias and assayed by flow cytometry for 
the presence of  B lineage cells. In several experiments, the 
recovery of total bone marrow cells per mouse did not differ 
significantly between control and M25 treated groups and 
ranged between 3 and 5 x 107. A striking reduction was 
observed (Fig. 1) in the number of  I gM+/CD45R a~ (im- 
mature) B cells (quadrant 1) as well as I g M - / C D 4 5 R  + 
pre-B and pro-B cells (quadrant 3) as a result of anti-IL-7 
treatment. 

The IgM § ht B cells (Fig. 1, quadrant 2) were 
not reduced by in vivo treatment with M25 mAb. To test 
whether the population of IgM + B cells that remains after 
M25 treatment is made up of mature B cells, bone marrow 
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Figure 1. Inhibition of B lymphopoiesis in adult mice treated with M25 
anti-IL7 mAb. Adult BALB/c mice were injected intraperitoneally with 
3 mg per injection on days 0, 3, 6, and 9 with either M25 or isotype- 
matched control antibody. Bone marrow cells were analyzed on day 10 
by flow cytometry as described in Materials and Methods for the expres- 
sion of CD45R (B220) and IgM. The percentages of the total bone marrow 
by quadrant were: (for Control) 1, 6.0%; 2, 7.3%; 3, 25.4%; (and for 
Anti-lL7) 1, 1.5%; 2, 10.6%; 3, 4.1%. 
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Figure 2. Differential effects of M25 on IgD + and IgD- B cell sub- 
populations. Mice were treated with M25 or control antibodies as in Fig. 
1 and bone marrow cells analyzed for the expression of IgM and IgD. 
The percentages of the total bone marrow by quadrant were: (for Control) 
I, 7.3%; 2, 6.2%; 3, 85.5%; (and for Anti-IL7) 1, 1.5%; 2, 8.6%; 3, 
89.4%. 

cells were tested for the expression of IgD as shown in Fig. 
2. As expected, the IgM+/IgD - immature B cells were sub- 
stantially reduced in number after M25 treatment whereas 
the IgD + mature B cells were unaffected. 

To determine the precise stage at which B cell develop- 
ment was arrested by the anti-IL-7 mAb, bone marrow cells 
from mice treated with M25 anti-IL-7 or control antibody 
were tested for the expression of a number of markers previ- 
ously used to characterize different stages of B cell develop- 
ment (1). BP-1 is a marker specific for pre-B cells (30). In 
mice treated with M25, BP-1 § cells were reduced from 17% 
to 1% of the bone marrow cells as shown in Fig. 3. The 
BP-1-/CD45tL dun cells (quadrant 2) are earlier B lineage 
cells. This population was also greatly reduced, from 15% 
in the control bone marrow to 5% in the M25 treated bone 
marrow (Fig. 3). These data indicate that the M25 mAb is 
arresting B cell development at a stage before the expression 
of the BP-1 marker. 

On CD45R § bone marrow cells, $7 (CD43) and 
heat stable antigen (HSA) have been used as markers to char- 
acterize the earliest B lineage cells (1). $7 +/HSA a~ cells rep- 
resent the earliest B lineage cells in this category which are 
followed in maturation by the $7 +/HSAbng ht cells and then 
the $7-/HSAb~ig ht cells. For this analysis, bone marrow cells 
were stained with four antibodies specific for IgM, CD45K, 
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Figure 3. Depletion of BP-1 + cells from adult marrow by treatment 
with M25. Mice were treated with M25 or control antibodies as in Fig. 
1 and bone marrow cells analyzed for the expression of CD45K and BP-1. 
The percentages of the total bone marrow by quadrant were: (for Control) 
I, 17.2%; 2, 15.0%; 3, 7.3%; and (forAnti.IL7) 1, 1.2%; 2, 4.9%; 3, 9.6%. 
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Figure 4. Identification of the earliest B lineage cell inhibited by M25. 
Mice were treated with MA5 or control antibodies as in Fig. 1. Bone 
cells were analyzed by flow cytometry for the expression of CD45R, IgM, 
HSA, and CD43 ($7). The data were gated on the IgM-/CD45R + cells 
and this subpopulation was analyzed for the expression of HSA and CD43 
($7). The percentages of the total bone marrow by quadrant were: (for 
Control) I, 1.4%; 2, 5.5%; 3, 16%; and (forAnti.ILT) 1, 2.4%; 2, 0.6%; 
3, 1.1%. 
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$7, and HSA. The data were gated to include all 
CD45R+/IgM - cells and then analyzed for the expression 
of $7 and HSA as shown in Fig. 4. Many fewer cells fell within 
these gates from M25 treated mice compared with control 
mice, being 24% of the total (small scatter gated) bone marrow 
in the controls and 4% in the M25 treated mice. However, 
the total number of cells in the $7 +/HSA aun B lineage popu- 
lation (quadrant 1) was essentially unaffected by treatment 
with M25 anti-IL7. The S7+/HSAbtig ht as well as the 
S7- /HSA b~sht B lineage cells (quadrants 2 and 4) were 
greatly reduced (>90%) by treatment of mice with M25 anti- 
II,-7 mAb. The $7-/HSAbng ht cells represent the pre-B cells 
and late pro-B cells and include the BP-1 + population (1). 

In contrast to the effects of M25 on the B lineage in the 
marrow, little or no effect was seen on peripheral B cell popu- 
lations under the conditions of treatment used in this study. 
To directly determine if peripheral B cell populations are de- 
rived from IL-7-dependent precursors, mice were treated with 
anti-IgD mAbs. Treatment of mice with goat anti-IgD in- 
duces a T cell-dependent immune response in which IgD + 
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Figure 5. Inhibition of B lymphopoiesis by M25 in anti-IgD treated 
mice. Adult BALB/c mice were treated on day 0 with anti-lgD. Mice were 
also left untreated or were treated intraperitoneally with either M25 or 
control antibodies, days 0-21 every third day, 1 mg per injection. Mice 
were killed on day 23 and bone marrow cells analyzed by flow cytometry 
for the expression of CD45R and IgM. 

B cells are stimulated to differentiate into IgG1 secreting cells. 
By 2 wk after anti-IgD antibody injection however, the acti- 
vated B cells die (26, 27). Thus, injection of anti-IgD anti- 
body, would provide a simple way to deplete IgM § + 
B cells and could be used to determine if IL-7 were required 
for regrowth of this population. For this reason, mice were 
treated with anti-IgD and treated subsequently for 3 wk with 
M25 or control antibody. Analysis of the B lineage in the 
bone marrow (Fig. 5) indicates that at day 23 after anti-IgD 
treatment, IgM + cells are present in normal numbers with 
the exception of the CD45Rbng ht subset. Treatment with 
anti-IgD (day 0) followed by M25 anti-IL-7 antibody (1 mg 
intraperitoneally, every third day) resulted in the complete 
absence of IgM + bone marrow cells. By day 23 after injec- 
tion of anti-IgD antibody, B cells have begun to repopulate 
the LNs of the anti-IgD treated mice (Fig. 6). However, treat- 
ment with anti-IL-7 mAb prevents the reappearance of 
IgM § B cells in the LNs of anti-IgD treated animals. Small 
numbers of IgM- B cells persist in the LNs of anti-IgD 
treated mice. These cells are IgG + (data not shown), and 
therefore represent the B cells that are switched as a result 
of anti-IgD treatment. Similarly, a substantial population of 
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Figure 6. Inhibition of peripheral B cell repopulation by M25. LN cells 
from anti-IgD and M25 (for Control and Untreated) treated adult BALB/c 
mice shown in Fig. 5 were analyzed by flow cytometry for the expression 
of CD45R and IgM. 
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IgM ÷ B cells in the spleen and peritoneal cavity persist in 
anti-IgD treated mice (data not shown). These populations 
are CD23- and probably resist anti-IgD by virtue of low 
levels of IgD on their surface. These B cells probably repre- 
sent the marginal zone B cells of the spleen and B-1 cells 
of the peritoneum. 

Developing embryos were treated in utero with M25 anti- 
IL-7 which effectively crosses the murine placenta. Pregnant 
female BALB/c mice were treated from day 10 of gestation 
with daily intraperitoneal injections of M25 or control anti- 
body. The spleen and liver of the newborn mice were tested 
for the presence of B lineage cells as shown in Fig. 7. The 
B lineage comprised about 20% of the spleen, including 6.4% 
IgM ÷ B cells, in newborns delivered from control antibody 
treated mothers. Treatment in utero with M25 anti-IL-7 pro- 
foundly inhibited the development of the B lineage leaving 
only 0.5% IgM + cells and 2.6% IgM- B cells (pre-pro-B). 
These data provide further evidence that the precursors that 
give rise to peripheral B cells, including cells of the B-1 lin- 
eage, are IL-7 dependent. Very similar results were obtained 
with the newborn liver cells (data not shown). 

In spite of evidence discussed above that the peripheral B 
cells are derived from IL-7-dependent precursors, adult mice 
treated for up to 3 wk with M25 anti-IL-7 show very little 
reduction in the numbers of peripheral B cells (data not 
shown). The same is true of peripheral T cells. There is, how- 
ever, a significant and reproducible effect of M25 antibody 
treatment on the thymus. After 10 d of treatment with M25 
(3 mg intraperitoneally, every third day) thymic ceUularity 

Figure 8. Effect of M25 on thymic cellularity. Mice were treated with 
M25 (hatched bars) or control (filled bars) antibodies as in Fig. 1, and thymic 
cellularity was determined by viable cell counts. 

is substantially reduced relative to control-treated mice (Fig. 
8). Absolute numbers of cells within each subset are decreased 
(Fig. 9), although the double negative cells were the the least 
affected being reduced by only 43% compared with a reduc- 
tion of 80% of the double positives, 60% of the CD8 ÷ 
subset, and 83% of the CD4 + subset. The total number of 
double positive thymocytes (quadrant 2) in the control group 
averaged 7.1 x 107 cells per thymus as compared with 1.4 
x 107 cells per thymus in the M25-treated group. 

The effects of M25 in vivo appear to be lymphoid specific 
as bone marrow cells from the treated animals generated 
normal numbers of CFUs in response to GM-CSF as shown 
in Fig. 10. The number of CFUs in response to IL-7 was 
greatly reduced in M25 treated animals, suggesting that most 
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Figure 7. Inhibition of B lymphopoiesis in utero. Pregnant mice were 
treated with daily intraperitoneal injections, 2 mg per injection, with ei- 
ther M25 or control antibody from day 10 of gestation. Spleen cells from 
the newborn animals were analyzed by flow cytometry for the expression 
of CD45R and IgM. The percentages of the total spleen by quadrant were: 
(for Control) 1, 6.4%; 2, 12.7%; and (for Anti-IL7) 1, 0.6%; 2, 2.6%. 
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Figure 9. Effect of M25 on thymic subpopulations in adult mice. Mice 
were treated with M25 or control antibodies as in Fig. I and thymocytes 
analyzed for the expression of CD4 and CD8. The percentages of the total 
thymocytes by quadrant were: (for Control) 1, 3.5%; 2, 79.4%; 3, 4.5%; 
4, 12.6%; and (for Anti.IL7) I, 2.5%; 2, 65.6%; 3, 10.8%; 4, 21.1%. 



Figure 10. Effect of M25 in vivo on the in vitro CFUs. Mice were 
treated with M25 or control antibodies as in Fig. 1 and the bone marrow 
CFUs were measured in response to IL-7 (hatched bars) or GM-CSF (filled 
bars) as described in the Materials and Methods. 

of the progenitor cells of the CFU-IL-7 were themselves IL-7 
dependent. 

Discussion 

In this study, we have demonstrated that treatment of adult 
mice with M25 mAb against IL-7 arrests the development 
of B cells in the marrow as measured by the complete inhibi- 
tion of the appearance of IgM +/IgD- ceUs. Development 
of IgM-/CD45R + pre-B calls in the bone marrow is also 
substantially, although not completely, inhibited. 

The persistence of a minor subpopulation of IgM- /  
CD45R + cells in the marrow of M25 anti-IL-7 treated mice 
allowed the analysis of the precise stage at which the B lin- 
eage was inhibited. Hardy et al. (1) were able to stage mu- 
fine B cell development in the adult marrow using flow cytom- 
etry, including antibodies against CD43 ($7), HSA, and BP-1, 
as well as CD45R and surface IgM. We have used these 
markers and found that the earliest B lineage cells detectable 
with these markers, which are $7 +/HSA ann, are the latest 
B lineage cells that survive in anti-IL-7 treated mice. All sub- 
sequent stages of developing B cells, as identified by the ex- 
pression of the HSA and BP-1 antigens, were profoundly re- 
duced in these animals. These results indicate that the earliest 
B cell progenitors may not require IL-7 for survival. Such 
cells have been reported to require contact with stromal cells 
for survival (1). The possibility that their dose association 
with stromal cells makes them inaccessible to antibodies cannot 
be completely ruled out in this study, although other studies 
have demonstrated the ability of mAbs to enter this intimate 
compartment (31). 

The stage at which B cell development is blocked in anti- 
IL-7 treated animals demonstrates an interesting contrast to 
the B cell defidencies generated in mice with targeted mu- 
tations that interrupt early B cell development, including those 
that interfere with Ig gene rearrangement, RAG-1 (32), 
RAG-2 (33), and J.T (34), as well as those that interfere 
with the expression of the pre-B cell receptor, X5T (35) and 
~MT (36). In fact, all of these knockout mice appear to ar- 
rest B cell development at the same stage (32-34), which cor- 
responds to the expression of the /~m-X5-Vp~-B complex. 
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Therefore, it appears that the pre-B cell receptor functions 
as an important transition in B cell development by providing 
a positive selection for B cells that have productive IgH rear- 
rangements. Anti-IL-7 treatment arrests B cell development 
at an earlier stage, when the B lineage becomes IL-7 depen- 
dent, which follows the final commitment to the B lineage 
when IgH rearrangements are just beginning. 

The early pre-pro-B cell which is unaffected by anti-IL-7 
treatment is still responsive to IL-7 treatment in vitro. The 
growth of IL-7-responsive CFUs from the bone marrow of 
anti-IL-7 treated animals is substantially reduced, but there 
is a significant and highly reproducible residual CFU response 
by such cells. Addition of MGF with IL-7 to these marrow 
cultures greatly increases the number of early B lineage CFUs 
(data not shown). 

Peripheral B cells in normal adult animals were relatively 
unaffected by treatment with the anti-IL-7 antibody under 
the conditions of this study (10 d of treatment). A kinetic 
study was done (data not shown) which demonstrated that 
this was the minimal exposure required to completely de- 
plete pre-B and immature B cells from the marrow. Longer 
treatment schedules of up to 3 wk were also unable to sub- 
stantially decrease the number of peripheral B cells. These 
results are consistent with the results of others which indi- 
cate that the majority of peripheral B cells are long-lived (13). 
Newly developed B ceils however, are probably short-lived 
in the periphery, as suggested by treatment of normal mice 
with IL-7. After 6 d of treatment, B lymphopoiesis was dra- 
matically stimulated and the number of mature peripheral 
B cells doubled, yet within 2 wk after cessation of treatment, 
B cell numbers returned to normal (12). 

Injection of mice with anti-IgD antibody results, within 
2 wk, in the death of the IgM+/IgD + B cells that are 
stimulated by this antibody. As nearly all IgM § B cells in 
peripheral LNs also express IgD, this treatment depletes nearly 
all LN IgM + B cells and allows repopulation of the LN 
with freshly generated IgM + B cells to be observed (26, 27). 
Treatment of mice with M25 anti-IL-7 after anti-IgD treat- 
ment completely inhibited the repopulation of the periph- 
eral LN with IgM + B cells. This indicates that these periph- 
eral IgM § cells are indeed derived from IL-7-dependent 
bone marrow precursors. These data also argue against the 
possibility that the persistence of the peripheral B cells in 
mice treated with anti-IL-7 is due to inefficiency of the an- 
tibody. 

In anti-IgD treated mice, specific subpopulations of splenic 
and peritoneal B cells were not depleted, probably as a result 
of relatively low expression of IgD. These subpopulations 
represent the splenic marginal zones and the B-1 cells of the 
peritoneal cavity. B-1 cells in the peritoneum self-renew and 
are not derived from precursors in the adult marrow (14, 15, 
17). The precursors of the B-1 lineage are found in the fetal 
liver, are distinct from the precursors of conventional B cells, 
and are the predominant B lineage cells in the developing 
fetus (16, 17, 37). We found that treatment of fetuses in utero 
with the M25 anti-IL-7 antibody from day 10 of gestation 
completely inhibited the appearance of IgM + cells in the 
spleen or liver of the neonates. These data would indicate 
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that the B-1 lineage is derived from IL-7-dependent precursors 
in early development. However, resistance of peripheral adult 
B-1 cells to the effects of anti-IL-7 treatment might result 
from their self-renewal and thus their autonomy from IL-7. 

CD45Kb~ight/IgD + B cells in the marrow were unaffected 
by treatment with M25 anti-IL-7 in contrast to the imma- 
ture IgM+/IgD - B cells in the marrow, which were elimi- 
nated by this treatment. IgD is expressed on developing B 
cells after IgM and has been shown to be a marker of rela- 
tively mature virgin B cells (38). Like the IgM+/IgD + B 
cells in the marrow, mature B cells in the periphery were 
not eliminated by anti-IL-7 treatment. These data suggest 
that the IgD + cells in the marrow are derived from recir- 
culating peripheral B cells. 

In addition to its effects on B cell development, anti-IL-7 

treatment substantially inhibited thymic cellularity, resulting 
in a three- to fourfold reductiofl in cell number. All the major 
thymocyte subsets were affected by the treatment. This sug- 
gests that IL-7 may be important for proliferative expansion, 
but not differentiation of thymocytes. Similar effects were 
observed when mice were treated in utero with anti-IL-7. 

We conclude that IL-7 is an essential factor for the devel- 
opment of B lineage cells that become IL-7 dependent when 
they reach the pro-B cell stage and begin to rearrange H chain 
genes. Our data also indicate that most or all peripheral B 
cells are derived from IL-7-dependent precursors, although 
most peripheral B cells are stable and do not represent a high 
turnover cell population. Finally, our data indicate that IL-7 
is important, but possibly not essential in T cell development 
in that it promotes lymphocyte growth within the thymus. 
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