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The inducible galactose transport system in bakers' yeast carries out the facili-
tated diffusion of the nonmetabolized galactose analogues D-fucose and L-arabinose.
This capacity depends on the activity of the Ga 2 gene. In some strains, D-fucose and
L-arabinose are also gratuitous inducers. Mutants in which the inducibility of the
galactose pathway enzymes is altered show a parallel alteration of the inducibility
of the galactose transport system.

Galactose metabolism in bakers' yeast involves
the induction of a specific transport system and
the galactose pathway enzymes: for adenosine
triphosphate, a-D-galactose-1-phosphotransferase
(E.C. 2.7.1.6); for uridine diphosphoglucose,
a -D - galactose - 1 - phosphate uridylytransferase
(E.C. 2.7.7.12) and uridine diphosphoglucose 4-
epimerase (E.C. 5.1.3.2). The structural gene for
the galactose transport system, Ga 2, is on
chromosome XII; the structural genes for the
enzymes, Ga 1, Ga 7, and Ga 10, respectively,
are clustered as a single operon on chromosome
II (12, 21). Mutants deficient in the structural
genes for the phosphotransferase (or "galacton-
kinase"), uridylyltransferase, or the epimerase
are phenotypically galactose-negative. Mutants
deficient in the galactose transport system are
galactose-negative in media of low galactose con-
centrations but are galactose-positive in media of
high galactose concentrations (12, 24).

In the experiments reported below, the char-
acteristics of the galactose transport system were
studied by use of the nonmetabolized galactose
analogues D-fucose and L-arabinose.

MATERIALS AND MErHODS

Yeast strains. The haploid strains of Sacchlaromyces
cerevisiae used in this study are listed in Table 1.
They were kindly supplied by Howard C. Douglas.
One diploid strain, L-14, was isolated from a cake of
commercial Anheuser-Busch bakers' yeast and is the
same yeast used in previous studies (5-7, 27).

Growth conditions. Two types of liquid media were
used. The standard medium contained: 1% tryptone
(Difco), 0.3% yeast extract (Difco), 0.4% KH2PO4
(adjusted to pH 7.0), and 2% D-glucose or D-galac-
tose. Induction medium contained: 2%7c peptone
(Difco), 1% yeast extract, 0.2%o D-glucose, and 0.2%

inducer. The induction medium was used to test the
effectiveness of nonmetabolized sugars as gratuitous
inducers and to induce the galactose transport system
in galactose-negative mutants (12). The sugars and the
sugar-free portions of the growth media were auto-
claved separately as 2X concentrated solutions and
were mixed aseptically before use. The cells were
grown overnight in 250 ml of liquid medium in 500-
ml flasks on a rotary shaker at 30 C. Each flask was
inoculated with the growth from a 24-hr Sabouraud
Dextrose Agar (Difco) slant.

Procedure for measurement of sugar transport. The
cells were harvested and washed by centrifugation in
demineralized water. The volume of the packed cells
was determined, and a 50% (v/v) suspension was
prepared. In most experiments, 0.75-mi portions of
this 50% suspension were added to tubes containing
0.75 ml of a sugar solution containing 2X the desired
final sugar concentration. The incubations were
carried out at 30 C, and the cells were mantained in
uniform suspension by a magnetic stirrer. The cell
suspensions and the sugar solutions were temperature-
equilibrated before mixing. At the desired intervals
(usually six 30-sec intervals), 0.2-ml samples were
removed from the incubation mixture and trans-
ferred to chilled centrifuge tubes containing 5 ml of
ice-cold demineralized water. The cells were centri-
fuged at 3,000 X g for 1 min, and the packed cells
were washed with two 5-ml portions of ice-cold
demineralized water. After the second wash, the cells
were suspended in 2 ml of demineralized water and
extracted according to the method of analysis to be
used. For radiochemical assay, the cells were extracted
by boiling for 10 min. For chemical assay, the cells
were incubated in the demineralized water for 1 hr at
30 C. (This extraction was found to be as effective as
boiling in releasing I4C-labeled sugars from cells
previously incubated in these sugars for short time
intervals. It was less efficient than boiling when the
cells had reached equilibration with external sugar.
The 30 C procedure was used because it produced
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TABLE 1. Yeast strains used

Galactose phenotype
Strain genotype

Grow th Inducibility

106-lB Wild type + Inducible
1446-87B Wild type + Inducible
346-3A ga 1, ga 2 - Inducible
346-3B Wild type + Inducible
346-3C ga 1 Inducible
346-3D ga 2 + Inducible
108-3A i_ + Constitutive
122-2C-1D C + Constitutive
107-5A ga 3 + Slow induction
279-1A ga 4 - Noninducible

f This strain is galactose-positive only in media
of high galactose concentrations (11). The four
346 strains are the tetrad from the same ascus.

extracts with low blanks. This is especially important
for pentose uptake experiments.)

RESULTS

Facilitated diffusion ofD-fucose and L-arabinose.
The data in Table 2 compare the time course of
uptake of the nonmetabolized analogues of D-
galactose, D-fucose and L-arabinose, in glucose-
grown and galactose-grown cells. The rate of L-
arabinose uptake was well over 100 times greater
in galactose-grown cells than in glucose-grown
cells; D-fucose uptake was about 50 times greater.

It is significant that the maximum intracellular
concentrations did not exceed the extracellular
concentrations. To test this point further, the
ratio of internal to external concentration of L-
arabinose was tested over a wide range of external
concentrations. The internal concentration of L-
arabinose never exceeded the external concentra-
tion (Table 3). Consistent with the nonconcentra-
tive nature of this uptake, uptake was not in-
hibited by 10 mm azide, cyanide, or arsenate under
the identical conditions of exposure as found by
Okada and Halvorson (23) to inhibit the induc-
ible a-glucoside active transport in bakers' yeast.
Sugar uptake by transport mutants. Douglas

and Condie (11) described galactose transport
mutants (ga 2) which could grow on galactose
only if the galactose concentration in the growth
medium was high. de Rubichon-Szulmajster (24)
showed that these mutants have a reduced rate of
14C-D-galactose uptake. L-Arabinose and D-
fucose uptake by ga 2 cells grown on galactose
also reflect this transport deficiency. Table 4
shows that L-arabinose and D-fucose uptake by
the four segregants from an ascus produced from
a cross between a galactokinaseless (ga 1) and a
transportless (ga 2) strain is dependent on the

TABLE 2. Time course of L-arabinose and D-fucose
uptake at 30 C by wild-type (346-3B) cells grown
either on D-glucose or D-galactose mediuma

TrnprtAmt (mg) of
Growth sugar Transport sugar Trasport sugar/mi oftie cell water

min

D-Glucose L-Arabinose 30 0.7
60 1.1
90 1.3
150 2.4
180 2.5

D-Galactose L-Arabinose 0.5 3.4
1 6.7
1.5 7.4
2 11.8
2.5 10.1
3 10.5

D-Glucose D-Fucose 0.5 0.07
2.5 0.21
4.5 0.34
6.5 0.45
8.5 0.51
10.5 0.65
12.5 0.72
14.5 0.83

D-Galactose D-Fucose 0.5 4.1
2.5 8.1
4.5 14.5
6.5 16.3
10.5 18.1
12.5 19.9
14.5 18.1

a The extracellular L-arabinose concentration
was 25 mg/ml; the D-fucose concentration was
50 mg/ml.

Ga 2 gene but independent of the Ga 1 gene.
Induction of the transport system by non-

metabolized sugars. Since the galactose transport
system is inducible by galactose in galactokinase-
less cells in which galactose is not metabolized,
it was of interest to determine whether the non-
metabolized galactose anologues could also
serve as gratuitous inducers. In some strains,
these nonmetabolized sugars do serve as inducers;
however, in others they are inactive (Table 5). A
cross between an arabinose-inducible strain
(1446-87B) and an arabinose-noninducible (106-
IB) strain yielded an arabinose-inducible zygote
(Table 5). Arabinose inducibility is thus dominant
over noninducibility.
Sugar trawsport in regulatory mutants. Douglas

and Hawthorne isolated four mutants in which
the inducibility of the galactose pathway enzymes
is altered (see Table 1). The rate of L-arabinose
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TABLE 3. Conicentration ratios of L-arabinose in
galactose-grown L-14B cellsa

Intracellular-extracellular ratio
Extracellular

molarity
15 min 30 min 105 min 120 min

1.3 X 10-5 0.19 0.30 0.45 0.48
1.3 X 10-4 0.29 0.27 0.62 0.73
1.3 X 10-s 0.20 0.18 0.72 0.72
1.3 X 10-2 0.33 0.27 0.71 0.85
1.3 X 10-1 0.21 0.26 0.76 0.62

a Ratios are expressed as intracellular '4C-L-
arabinose to extracellular.

TABLE 4. Sugar tranisport by the four segregant
cultures from a single ascus produced by a

cross between a galactokinaseless (ga 1)
and a transportless (ga 2) straina

Sugar uptake
(mg/ ml of
cell water)

Ascopore Genotype Phenotype

346-3A ga 1, ga 2 Kinaseless + 0.2
transportless

346-3B Ga 1, Ga 2 Wild Type 5.4 8.1
346-3C ga 1, Ga 2 Kinaseless 5.0
346-3D Ga 1, ga 2 Transportless 0.3 0.6

a The cultures were induced by growth for
24 hr at 30 C in induction medium containing 0.2%
glucose plus 0.2% D-galactose. Uptake was meas-
ured from an external sugar concentration of
50 mg/ml for 2 min at 30 C.

uptake in the four mutants is shown in Table 6.
It is clear from these results that the mutations
affect the galactose pathway enzymes and the
transport system in a parallel manner. Data on
the strictness of the coordination of the control
of these separate gene loci will be presented in the
second paper of this series.

DISCUSSION

The data presented above show that the non-
metabolized sugars, D-fucose and L-arabinose,
are substrates of the inducible galactose transport
system and that they are transported by a facil-
itated diffusion mechanism. The nonconcentrative
nature of this system distinguishes it from other,
previously described inducible transport systems,
all of which are active transport systems. This
fact serves to emphasize the fundamental similar-
ity between facilitated diffusion and active trans-
port (4, 18, 23). The central, common feature in

TABLE 5. Induction of the galactose transport
system by D-fucose and L-arabinosea

Amt (mg) of L-arabinose/ml
of cell water

Strain
No- IAai
in- oGalac o-Fucose L-Arabi-
ducertoens

346-3B 0.1 5.5 2.2
346-3C 0.0 10.8 5.0 10.1
1446-87B 0.4 3.2
L14-B 0.3 5.0 0.3 0.3
106-lB 0.1 3.7 0.2
Zygote

(1446-87B X 106-iB) 0.0 2.4

a L-Arabinose uptake was measured at 2 min
at 30 C from an external concentration of 50
mg/mi. The inducers were present in the induction
medium at 0.2'>).

TABLE 6. L-Arabiflose uptake by regulatory mutants
grown on galactose induction medium for 24 hra

Genotype

Wild type

C

ga 3

ga 4

Inducer

None
D-Galactose

None
D-Galactose

None
D-Galactose

None
D-Galactose

None
D-Galactose

Amt (mg) of
L-arabinose/ml
of cell water

0.1
5.4

3.1
6.5

2.4
7.4

0
0.1

0
0

a The extracellular L-arabinose concentration
was 50 mg/ml; uptake was measured after 2 min
at 30 C.

these two processes is the involvement of a stereo-
specific carrier or transporteur. It is tempting to
speculate, therefore, that the product of the
transport gene in both cases is the carrier mole-
cule. The energy-coupling mechanism which is
unique to the active transport systems would
then be an independent step (presumably under
independent genetic control). Such a concept is
supported by data from the Escherichia coli-
galactoside permease system (15, 17, 18).

Irrespective of the basis of the difference be-
tween the induced facilitated diffusion and active
transport systems, there are a number of interest-
ing parallels between the yeast and the E. coli
galactose transport systems. One feature of the
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E. oo/i galactose system not exhibited by bakers'
yeast is the phenomenon of endogenous induction
of the remaining galactose genes in galactokinase-
less mutants (16, 29). Wu (28) has recently shown
that endogenous induction depends upon the
capacity of the galactose permease to accumulate
an intracellular galactose pool derived fronm
endogenous bicsynthesis of galactose. In the
absence of the accumulating capacity of the
galactose permease (i.e., in galactose permease-
less mutants), endogenous induction is not
observed. The absence of the phenomenon of
endogenous induction of the remaining galactose
genes in galactokinaseless mutants in bakers'
yeast may thus be a reflection of the nonconcen-
trative nature of the yeast galactose transport
system.
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