
Volume 11 Number 13 1983 Nucleic Acids Research

An efficient method for finding repeats in molecular sequences

Hugo M.Martinez

Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143,
USA

Received 4 April 1983; Revised 23 May 1983; Accepted 31 May 1983

ABSTRACT

The problem of finding repeats in molecular sequences is
approached as a sorting problem. It leads to a method which is
linear in space complexity and NlogN in expected time complexity.
The implementation is straightforward and can therefore be used
to handle large sequences with relative ease. Of particular
interest is that several sequences can be treated as a single
sequence. This leads to an efficient method for finding dyads
and for finding common features of many sequences, such as favor-
able alignments.

INTRODUCTION

There are a number of significant problems in the analysis
of molecular sequences (here regarded as strings over finite
alphabets) which can be reduced to one of finding repeats. A
necessary condition, for instance, that two or more sequences be
homologous is that they contain a significantly large subsequence
(substring) in common. If the sequences are placed end to end,
then such a common subsequence is an instance of a special kind
of repeat. Another example arises in the stem-oriented approach
to determining the secondary structure of RNA. This approach
first requires the finding of all the potential double helices
(stems). Such helices are instances of dyads which in turn can
be regarded as special repeats when the RNA sequence and its
reverse complement are placed end to end. Still another impor-
tant example occurs relative to searching for control signals.
Sequences which are known to contain the signal can be placed end
to end and the signal can be regarded as a special repeat.

Computer science has provided a number of solutions to the
repeats problem, the most efficient of which appears to be the

© IRL Press Umited, Oxford, England.

Nucleic Acids ResearchVolume 1 1 Number 13 1983

4629



Nucleic Acids Research

one based on the concept of position trees (1). It can find
repeats with an expected time complexity which is linear in the
length of the sequence but whose worst case gives a time complex-
ity which depends quadratically on the length unless special pre-
cautions are taken. Such worst cases also involve a space com-
plexity which depends quadratically on the sequence length,
though linearly in the expected sense. Additionally, there is the
complication that delineating specific repeats involves cumber-
some though straightforward tracing of paths in the tree. The
method we propose is linear in space complexity for both the
expected and worst case, and it is of time complexity NlogN (N =
sequence length) in the expected sense. Worst cases can give a
time complexity which is quadratic, but special methods can be
used to spot the unusual examples in which they arise and reduce
them to essentially the expected case. Further, the method
involves no path tracing. The repeats are immediate and are
reported during the process of sorting to be explained below. An
entire tree does not have to first be constructed.

DESCRIPTION OF THE METHOD

Our approach is exceedingly simple and requires no more than
the repeated application of a sorting algorithm. The overall
speed is essentially determined by the speed of the sorting algo-
rithm employed.

There is first constructed a sequence P of pointers such
that pointer value P[i] is the location of the ith element in the
sequence S. We then sort P so that it constitutes an ordering of
S. That is, Pti] < P[j] or P[i] > P[j] or P[i] = P[j] according
to whether S[P[i]J < S[P[j]] or S[P[i]] > S[P[j]] or S[P[i]] =

S[P[j]] respectively. With such a sorting of P all the pointer
values which point to the same kind of element in S are grouped
together. If there are m letters in the alphabet over which S is
defined, then there will be at most m groups of pointer values in
this first sorting.

We next sort each of these groups of P so that in the
resulting subgroups two pointer values belong to the same one if
and only if the elements immediately following the ones they
point to are equal. Each of these subgroups is then sorted

4630



Nucleic Acids Research

according to the elements twice removed from the elements pointed
to, etc.

When no subgroups contain more than one pointer value the

process is complete and there results an ordering of P with the

following characteristic. Starting at each element of S there is
a unique substring (sequence of contiguous elements) which dis-
tinguishes it from any other element of S; that is, no other ele-

ment of S is the start of such a substring. These substrings can

be lexicographically ordered and it is precisely this ordering
which the final ordering of P represents.

The repeats are generated during the sorting procedure in
the following manner. Suppose that we have just produced a group
of pointer values and that it is the result of k sorts. The ele-
ments pointed to then have the property that the substrings of
length k of which they are the start are instances of a repeat of
length k provided that it cannot be extended in length. To be
extended in length means that an additional sorting of the group

of pointers does not break it up into subgroups. Thus, every

time a group of pointer values breaks up it signals the finding
of a repeat, and where it occurs are the pointer values in that
group.

A distinct merit of this approach is that no significant
storage space is required beyond that necessary for the sequence
S and its pointer sequence P. We also note that the sorting
scheme is very similar to how one would go about the lexico-
graphic ordering of a finite number of sequences defined over a

finite alphabet. If there are m elements in this alphabet we

would first group the sequences (pointers to them) into at most m

groups Gl,G2,..,Gm. The pointers in group Gl are those pointing
to the sequences beginning with the first letter of the alphabet,
those in group G2 are the ones pointing to the sequences starting
with the second letter of the alphabet, etc. Each of these

groups is now independently divided into at most m groups

Gil,Gi2,..,Gim such that Gil are those pointers in group Gi which

point to sequences whose second element is the first letter of

the alphabet, those in Gi2 are the ones of Gi pointing to

sequences whose second element is the second letter of the alpha-
bet, etc. If the average length of the sequences is k and if

4631



Nucleic Acids Research

there are n sequences, then the expected time to accomplish their
full lexicographic ordering is just k(cN), in which cN is the
time required to sort the N elements into m groups.

The basic difference between this sorting scheme and the one
used for obtaining the repeats is that we do not have separately
defined sequences. There is just one. But if its length is N,
then it is as though we had N sequences of average length log M.
To see this equivalence, we note that the first sorting of the N
elements results, on the average, in m groups of size N/m. If it
takes time cN to sort N elements into m groups, then it will take
time cN to sort all of the m groups of size N/m. This second
sorting results, on the average, in m2 groups of size M/mi
for which the combined resorting time will again be cN, etc.

The highest power k for which N/mik > 1 sets an upper limit to the
number of such full sorts. We can therefore take k as logN to

the base m.

IMPLEMENTATION CONSIDERATIONS AND APPLICATIONS

A considerable improvement in speed can be achieved with a

little pruning. For example, a group of element positions which
can be extended backwards must necessarily be included in a set
of repeats obtained by the forward extension rule. We therefore
test a group of potential repeats for backward extendability
prior to its resorting. If the test is positive it is
disregarded thereafter.

In the case of finding repeats in multiple sequences we take

advantage of the constraint that a potential repeat group must
necessarily contain an instance of the repeat from all of the
sequences. Sizeable groups which would otherwise require
repeated resorting can thus be eliminated.

We have constructed four implementations of the algorithm,
called qrepeats, qdyads, qstems and qalign. The first finds all
the repeats in one or more sequences, the second is qrepeats spe-
cialized to accept but one sequence, construct its reverse com-
plement, and then find the repeats common to these two sequences.
Attention in qdyads is also given to filtering out duplicates
which necessarily arise because of the mirror image effect pro-
duced by working with the reverse complement of a sequence.

4632



Nucleic Acids Research

The third implementation, qstems, is qdyads specialized to

allow for internal U-G base pairing as required for secondary

structure in RNA. The programs qdyads and qstems are necessarily

geared to the DNA and RNA alphabets, but qrepeats is quite gen-

eral. No alphabet need be specified. This is achieved by using
a sorting algorithm which does not depend upon sequence structure

imposed by an alphabet. The slight loss in speed is, for the

most part, amply compensated for by the increased flexibility.
Another feature of qrepeats is to allow for intersymbol

spacing. For instance, we normally regard repeats as referring

to a sequence of contiguous elements which occurs at more than

one place. But it is sometimes important to consider not strict
contiguity but also a sequence of 'every other element' and hence
a single spacing between elements. An appropriate parameter is
used to select any periodic spacing desired. This flexibility

gives a direct implementation of searching for control signals

consisting, for instance, of sequences whose elements are a heli-
cal turn apart. But in addition it provides a means of investi-
gating complex repeat structures viewed as the combination of

simple, periodic ones.

The fourth implementation, qalign, offers a somewhat new

approach to the general problem of determining to what extent two

or more sequences are homologous. This means that simultaneous
alignments must allow for insertions and/or deletions. Our

approach to this problem is a generalization of the approach to

the RNA secondary structure problem which first finds the poten-

tial stems and then pieces them together to find a combination
which minimizes the total free energy. Thus, we first find the

potential common substrings and then find compatible combinations
of these whose total length is as large as possible. This latter

optimization is equivalent to a "shortest path" kind of a problem
and therefore has a solution of time complexity which is the

number of common substrings squared (1). In applying the qalign
program to a specific problem the option is given of selecting
the minimum length which is to be allowed for a common substring.
This gives control over what are to be regarded as statistically
significant common substrings and hence on the number of common

substrings from which to select compatible combinations. The

4633



Nucleic Acids Research

optimization algorithm employed allows for the weighting of gaps,
if desired, and mention should also be made of the option for
finding near optimal alignments. The specific implementation of
this latter feature finds all the alignments which lie within a

specified distance of the optimal alignment as measured in units
of the optimizing function (such as total number of matches in an

alignment).
We have run a number of tests as to actual speed. Typical

figures obtained on a VAX 11/750 computer are:
Seq. length qrepeats qdyads cNlog4N

1024 4.0 secs 16.0 secs 4.0 secs
2048 9.4 27.9 8.8
4096 22.1 103.4 19.2
8192 51.9 136.2 41.6

The qrepeat figures refer to repeats of length 5 or greater and
those for qdyads to dyads for which each half is of length 5 or

greater. The column headed cNlog4N is obtained from the qrepeats

column by assuming the 4.0 second figure to correspond to

cNlogmN. The constant c is thus evaluated and used to calculate
what the computation speeds would be at the remaining sequence
lengths if the expected time were cNlogmN. That the actual com-
putation times are more than this is attributed to the use of a
sorting algorithm which has an expected time complexity of NlogN
rather than cN.

The implementations are written in the C language. They are
available separately or as part of the UCSF Biomathematics Compu-
tation Laboratory sequence analysis package, which provides a
comprehensive set of programs geared to a UNIX operating system
environment.

ACKNOWLEDGEMENT
I am indebted to Professor Frederick Blattner of the Univer-

sity of Wisconsin for his very helpful suggestions during the
initial implementations of the algorithm and for his making a 27
kilobase DNA sequence available as an impetus to develop effi-
cient methods for handling large sequences.

This work was in part supported by NSF grant # PCM 8022006.

REFERENCES
1. Aho,V.A,Hopcroft,J.E and Ulman,J.D. (1975) The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading.

4634


